Loading…

Preparation of a Novel Zn(II)-Imidazole Framework as an Efficient and Regenerative Adsorbent for Pb, Hg, and As Ion Removal From Water

An outstanding metal–organic framework sorbent (Zn-MOF) was prepared using Zn2+ and 3-amino-5-mercapto-1,2,4-triazole to eliminate toxic metal ions from water. Zn-MOF was detected via using Fourier-transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), Brunauer–...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-09, Vol.12 (37), p.41294-41302
Main Authors: Huang, Zhen, Zhao, Minghu, Wang, Chen, Wang, Shixing, Dai, Linqing, Zhang, Libo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An outstanding metal–organic framework sorbent (Zn-MOF) was prepared using Zn2+ and 3-amino-5-mercapto-1,2,4-triazole to eliminate toxic metal ions from water. Zn-MOF was detected via using Fourier-transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller (BET) analysis, and X-ray photoelectron spectroscopy (XPS). Zn-MOF is stable and has a very large surface area. The uptake properties of Zn-MOF were investigated. The maximum uptake capacity of Zn-MOF for Pb, Hg, and As ions was 1097, 32, and 718 mg/g, respectively. This was obtained at pH = 4, 5, and 6, respectively. The adsorption data is in good agreement with the Langmuir and pseudo-second-order rate models, indicating that the uptake process of Zn-MOF for toxic metal ions was a single layer uptake on a uniform surface via exchange of valence electrons. Thermodynamics shows that the uptake process is autogenic and endothermic. Zn-MOF can be reused at least 6 times. Mercury and lead strongly coordinated with Zn-MOF. The interaction between arsenic and Zn-MOF is weak chemical coordination and ion exchange. Zn-MOF has wide application prospects for toxic metal ion elimination.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c10298