Loading…

Applications of Cellulose Nanomaterials in Stimuli-Responsive Optics

As one of the most abundant biopolymers, cellulose has been a basic but essential building block of human society, with its use dating back thousands of years. With recent developments in nanotechnology and increasing environmental concerns, cellulose-based nanomaterials are now gaining attention as...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2020-11, Vol.68 (46), p.12940-12955
Main Authors: Peng, Zhiwei, Lin, Qinglin, Tai, Yu-An Angela, Wang, YuHuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As one of the most abundant biopolymers, cellulose has been a basic but essential building block of human society, with its use dating back thousands of years. With recent developments in nanotechnology and increasing environmental concerns, cellulose-based nanomaterials are now gaining attention as promising green material candidates for many high-value applications as a result of their biocompatibility and advantageous physical and chemical properties. In particular, cellulose nanocrystals are notable for their optical properties that can respond to various environmental stimuli as a result of the unique chiral nematic structure of the material. Compositing cellulosic materials with functional polymers, small molecules, and other nanomaterials can further stabilize and amplify these responsive optical signals and introduce multiple new functionalities. On the basis of these capabilities, many advanced applications of cellulose nanomaterials have been proposed, including chemical sensors, photonic papers, decorative coatings, data security, and smart textiles. In this review, we discuss and summarize recent advances in this emerging field of stimuli-responsive optics based on cellulose nanomaterials.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c04742