Loading…

Common cocklebur (Xanthium strumarium) resistance to selected ALS-inhibiting herbicides

Five biotypes of common cocklebur that were not controlled with acetolactate synthase (ALS)-inhibiting herbicides were tested in greenhouse and laboratory studies to determine the magnitude of resistance and cross-resistance to four ALS-inhibiting herbicides. In vivo inhibition of ALS was also evalu...

Full description

Saved in:
Bibliographic Details
Published in:Weed technology 1997-04, Vol.11 (2), p.241-247
Main Authors: Sprague, C.L, Stoller, E.W, Wax, L.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Five biotypes of common cocklebur that were not controlled with acetolactate synthase (ALS)-inhibiting herbicides were tested in greenhouse and laboratory studies to determine the magnitude of resistance and cross-resistance to four ALS-inhibiting herbicides. In vivo inhibition of ALS was also evaluated. Based on phytotoxicity, all five ALS-resistant biotypes of common cocklebur were > 390 times more resistant than the susceptible biotype to imazethapyr. However, only four of these biotypes were also resistant to another imidazolinone, imazaquin. Two biotypes were cross-resistant to the sulfonylurea, chlorimuron, and the triazolopyrimidine sulfonanilide, NAF-75. One biotype demonstrated intermediate susceptibility to imazaquin, chlorimuron, and NAF-75. In all cases, the resistance exhibited at the whole plant level was associated with an insensitive ALS.
ISSN:0890-037X
1550-2740
DOI:10.1017/S0890037X00042901