Loading…

Hydroxyproline reaction with free radicals generated during benzoyl peroxide catalytic decomposition of carbon tetrachloride Structure of reaction products formed

Benzoyl peroxide catalytic decomposition of carbon tetrachloride in a model system produces trichloromethyl and trichloromethylperoxyl free radicals. These radicals are also produced by CCl4 bioactivation in liver and are considered to be responsible for the deleterious effects of this hepatotoxin....

Full description

Saved in:
Bibliographic Details
Published in:Amino acids 1996-01, Vol.10 (3), p.283-294
Main Authors: Castro, G D, Castro, J A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Benzoyl peroxide catalytic decomposition of carbon tetrachloride in a model system produces trichloromethyl and trichloromethylperoxyl free radicals. These radicals are also produced by CCl4 bioactivation in liver and are considered to be responsible for the deleterious effects of this hepatotoxin. In this study, it is attempted to learn about how the .CCl3 and CCl3O2. tend to react with hydroxyproline in a model system. Hydroxyproline was selected because of its role in collagen metabolism. During the interaction of both radicals with hydroxyproline a total of 16 reaction products were isolated and identified by gas chromatographic-mass spectrometric analysis. All of them were hydroxyproline analogs, no single one contained C from CCl4 and only three contained chlorine. Consequently, most adducts would be missed in experiments where formation of reaction products are studied by formation of(14)C or(36)Cl labeled adducts (e.g. covalent binding studies used by toxicologists). If similar hydroxyproline analog reaction products were observed during CCl4 intoxication it might be reasonably expected that they interfered with collagen metabolism and participate in cirrhogenic effects of CCl4 on the liver.
ISSN:0939-4451
1438-2199
DOI:10.1007/BF00807331