Loading…

The management of heat flow in deep mines (part 2)

In Part 1 of “The Management of Heat Flow in Deep Mines” the sources of heat, mechanism of heat transfer and strategies of controlling heat transfer have been discussed. Part 2 deals with the effects of heat on the human body and mine cooling strategies for deep mines. In detail the effects of heat...

Full description

Saved in:
Bibliographic Details
Published in:Geomechanik und Tunnelbau 2011-04, Vol.4 (2), p.157-163
Main Author: Wagner, Horst
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Part 1 of “The Management of Heat Flow in Deep Mines” the sources of heat, mechanism of heat transfer and strategies of controlling heat transfer have been discussed. Part 2 deals with the effects of heat on the human body and mine cooling strategies for deep mines. In detail the effects of heat on a worker are examined, heat stress and heat tolerance discussed and methods of assessing heat stress in different mining situations presented. Experiences from deep South African gold mines highlight the adverse effects of heat stress environment on safety and labour productivity. The principal methods of cooling of deep and ultra deep mines are discussed. It is shown that auto‐compression of ventilation air is a deciding factor governing the choice of surface or underground cooling of ventilation air. In the case of deep and ultra deep mines, the use of chilled service water and ice slurry has shown to be the most cost effective means of mine cooling. In the case of ice slurry as cooling medium advantage is taken of the latent heat of ice which significantly reduces the amount of water required for mine cooling and hence the cost of pumping the water to surface. Cooling strategies for moderately deep, deep and ultra deep mines are discussed. Examples of cooling of deep long mine tunnels are given.
ISSN:1865-7362
1865-7389
DOI:10.1002/geot.201100006