Loading…

Abrasively Immobilised Multiwalled Carbon Nanotube Agglomerates: A Novel Electrode Material Approach for the Analytical Sensing of pH

We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in ac...

Full description

Saved in:
Bibliographic Details
Published in:Chemphyschem 2004-05, Vol.5 (5), p.669-677
Main Authors: Wildgoose, Gregory G., Leventis, Henry C., Streeter, Ian, Lawrence, Nathan S., Wilkins, Shelley J., Jiang, Li, Jones, Timothy G. J., Compton, Richard G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate for the first time that agglomerates of multiwalled carbon nanotubes (MWCNTs) can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid. Two separate agglomerates were formed by dissolving 9,10‐phenanthraquinone (PAQ) or 1,2‐napthaquinone (NQ) in acetone together with MWCNTs and adding an excess of aqueous solution to cause precipitation of agglomerates, approximately 10 µ;m in dimension, which consist of bundles of nanotubes running into and throughout the amorphous molecular solid that binds the agglomerate together. The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, electrolyte|agglomerate|conductor, which is advantageous to the solid‐state analytical electrochemistry of such a material as it imparts a larger electroactive surface area than other modified carbon electrodes. The two agglomerates each gave a voltammetrically measurable response to changes in pH; when abrasively immobilised on a basal plane pyrolitic graphite electrode a plot of peak potential against pH produced a linear response for both MWCNT–PAQ and MWCNT–NQ agglomerates over the pH range pH 1–12 and over the temperature range 20–70 °C. Many three‐phase boundaries: The authors demonstrate for the first time that agglomerates of multiwalled carbon nanotubes can be formed in which the binder in the agglomerate is itself a redox‐active molecular solid (see picture). The nature of this structure, when immobilised on a substrate electrode and in contact with aqueous electrolyte solutions, gives rise to many three‐phase boundaries, which imparts a larger electroactive surface area than other modified carbon electrodes.
ISSN:1439-4235
1439-7641
DOI:10.1002/cphc.200400030