Loading…

Room-Temperature Tailoring of Vertical ZnO Nanoarchitecture Morphology for Efficient Hybrid Polymer Solar Cells

A ZnO nanoarchitecture, i.e., ZnO nanosheet (NS) framework, is demonstrated to be a promising electron acceptor and direct electron transport matrix for polymer‐inorganic hybrid solar cells. The ZnO NS framework is constructed on nanoneedles/indium tin oxide substrate via a room‐temperature chemical...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2012-09, Vol.22 (18), p.3808-3814
Main Authors: Sung, Yu-Hsiang, Liao, Wen-Pin, Chen, Dian-Wei, Wu, Chun-Te, Chang, Geng-Jia, Wu, Jih-Jen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A ZnO nanoarchitecture, i.e., ZnO nanosheet (NS) framework, is demonstrated to be a promising electron acceptor and direct electron transport matrix for polymer‐inorganic hybrid solar cells. The ZnO NS framework is constructed on nanoneedles/indium tin oxide substrate via a room‐temperature chemical bath deposition (RT CBD). The framework morphology can be simply tailored by varying the concentration of precursor solution in the RT CBD. The ZnO nanoarchitecture with an appropriate free space between the NSs is consequently demonstrated to facilitate poly(3‐hexylthiophene) (P3HT) infiltration, resulting in superior interface properties, i.e., more efficient charge separation and less charge recombination, in the hybrid. Moreover, apart from the characteristics similar to the ZnO nanorod (NR) array, including vertical feature and single crystalline structure, the ZnO NS framework exhibits a slightly larger absorption edge and a faster electron transport rate. A notable efficiency of 0.88% is therefore attained in the ZnO NS‐P3HT hybrid solar cell, which is higher than that of the ZnO NR‐P3HT hybrid solar cell. The ZnO nanosheet (NS) framework, which is constructed on nanoneedles/indium tin oxide substrate via a room‐temperature chemical bath deposition, exhibits a slightly larger absorption edge and a faster electron transport rate compared to a ZnO nanorod (NR) array. Superior interface properties are demonstrated in the ZnO NS framework/poly(3‐hexylthiophene) (P3HT) hybrid, resulting in an enhancement of the solar cell efficiency compared to ZnO NR‐P3HT hybrid.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201200415