Loading…

Dynam,c Changes of IsiA-Containing Complexes during Long-Term Iron Deficiency in Synechocystis sp, PCC 6803

Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of I...

Full description

Saved in:
Bibliographic Details
Published in:分子植物:英文版 2017, Vol.10 (1), p.143-154
Main Author: Fei Ma Xin Zhang Xi Zhu Tianpei Li Jiao Zhan Hui Chen Chenliu He Qiang Wang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA- containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially con- jugated to PSI trimer to form IsiA18-PS I trimers, which serve as light energy collectors for efficiently trans- mitting energy to PS h With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage.
ISSN:1674-2052
1752-9867