Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting

Modern-day histology of biological tissues requires precision cutting of a wide variety of tissue samples for histological analyses. Lots of common problems can be identified at the conventional microtome sectioning including creation of curling sections and sections stick to the blade, which made h...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong Wang, Anish Roy, Vadim Silberschmidt
Format: Default Article
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/2134/9917135.v1
Tags: Add Tag
No Tags, Be the first to tag this record!
id rr-article-9917135
record_format Figshare
spelling rr-article-99171352019-09-23T00:00:00Z Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting Dong Wang (1259088) Anish Roy (1256436) Vadim Silberschmidt (1248129) Mechanical engineering not elsewhere classified Materials Materials Engineering Manufacturing Engineering Ultrasonically assisted cutting Precision cutting Ultrasonically assisted cutting tool (device) design Chip (section) formation and quality Tool (blade) wear and damage Microtome Mechanical Engineering Modern-day histology of biological tissues requires precision cutting of a wide variety of tissue samples for histological analyses. Lots of common problems can be identified at the conventional microtome sectioning including creation of curling sections and sections stick to the blade, which made high-quality sections hard to obtain. This paper deals with the development of next generation of microtomes employing introduction of a controlled ultrasonic vibration to process biological tissues. Based on a combination of advanced experimental and numerical studies of a novel cutting system with multi-body dynamics, this study investigated effects of cutting parameters and characteristics of ultrasonic excitation with the aim to design and manufacture an ultrasonically assisted cutting device (UACD) for microtomy. The cutting mechanism was detailed to show the advantages of the ultrasonically assisted cutting in the creation of high quality, thin sections. The novel prototype was designed and developed to conduct conventional cutting (CC) and ultrasonically assisted cutting (UAC) of biological tissues embedded in wax. Cutting forces, blade wear, blade damage and section quality for these cutting processes were assessed. It was found that the efficiency and quality of cutting were dependent on the level of cutting forces, which were lower in UAC compared with CC. The quality of cut samples with a thickness of 4 μm was better in UAC than CC. The developed ultrasonically assisted cutting device also enables successfully sectioning of the thin biological samples with high precision, reduced blade wear and less blade damage. This will increase the blade life making both environmental and economic impacts. 2019-09-23T00:00:00Z Text Journal contribution 2134/9917135.v1 https://figshare.com/articles/journal_contribution/Production_of_high-quality_extremely-thin_histological_sections_by_ultrasonically_assisted_cutting/9917135 CC BY-NC-ND 4.0
institution Loughborough University
collection Figshare
topic Mechanical engineering not elsewhere classified
Materials
Materials Engineering
Manufacturing Engineering
Ultrasonically assisted cutting
Precision cutting
Ultrasonically assisted cutting tool (device) design
Chip (section) formation and quality Tool (blade) wear and damage
Microtome
Mechanical Engineering
spellingShingle Mechanical engineering not elsewhere classified
Materials
Materials Engineering
Manufacturing Engineering
Ultrasonically assisted cutting
Precision cutting
Ultrasonically assisted cutting tool (device) design
Chip (section) formation and quality Tool (blade) wear and damage
Microtome
Mechanical Engineering
Dong Wang
Anish Roy
Vadim Silberschmidt
Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
description Modern-day histology of biological tissues requires precision cutting of a wide variety of tissue samples for histological analyses. Lots of common problems can be identified at the conventional microtome sectioning including creation of curling sections and sections stick to the blade, which made high-quality sections hard to obtain. This paper deals with the development of next generation of microtomes employing introduction of a controlled ultrasonic vibration to process biological tissues. Based on a combination of advanced experimental and numerical studies of a novel cutting system with multi-body dynamics, this study investigated effects of cutting parameters and characteristics of ultrasonic excitation with the aim to design and manufacture an ultrasonically assisted cutting device (UACD) for microtomy. The cutting mechanism was detailed to show the advantages of the ultrasonically assisted cutting in the creation of high quality, thin sections. The novel prototype was designed and developed to conduct conventional cutting (CC) and ultrasonically assisted cutting (UAC) of biological tissues embedded in wax. Cutting forces, blade wear, blade damage and section quality for these cutting processes were assessed. It was found that the efficiency and quality of cutting were dependent on the level of cutting forces, which were lower in UAC compared with CC. The quality of cut samples with a thickness of 4 μm was better in UAC than CC. The developed ultrasonically assisted cutting device also enables successfully sectioning of the thin biological samples with high precision, reduced blade wear and less blade damage. This will increase the blade life making both environmental and economic impacts.
format Default
Article
author Dong Wang
Anish Roy
Vadim Silberschmidt
author_facet Dong Wang
Anish Roy
Vadim Silberschmidt
author_sort Dong Wang (1259088)
title Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
title_short Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
title_full Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
title_fullStr Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
title_full_unstemmed Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
title_sort production of high-quality extremely-thin histological sections by ultrasonically assisted cutting
publishDate 2019
url https://hdl.handle.net/2134/9917135.v1
_version_ 1797731896467128320