Cathode fall characteristics in a dc atmospheric pressure glow discharge

Atmospheric pressure glow discharges are attractive for a wide range of material-processing applications largely due to their operation flexibility afforded by removal of the vacuum system. These relatively new atmospheric plasmas are nonequilibrium plasmas with gas temperature around 100 °C and ele...

Full description

Saved in:
Bibliographic Details
Main Authors: J.J. Shi, Michael G. Kong
Format: Default Article
Published: 2003
Subjects:
Online Access:https://hdl.handle.net/2134/5170
Tags: Add Tag
No Tags, Be the first to tag this record!
id rr-article-9563783
record_format Figshare
spelling rr-article-95637832003-01-01T00:00:00Z Cathode fall characteristics in a dc atmospheric pressure glow discharge J.J. Shi (7129856) Michael G. Kong (7128488) Mechanical engineering not elsewhere classified untagged Mechanical Engineering not elsewhere classified Atmospheric pressure glow discharges are attractive for a wide range of material-processing applications largely due to their operation flexibility afforded by removal of the vacuum system. These relatively new atmospheric plasmas are nonequilibrium plasmas with gas temperature around 100 °C and electron temperature in the 1–10 eV range. Their appearance is characteristically diffuse and uniform, and their temporal features are repetitive and stable. Of the reported numerical studies of atmospheric glow discharges, most are based on the hydrodynamic approximation in which electrons are assumed to be in equilibrium with the local electric field. Spectroscopic and electrical measurements suggest however that the cathode fall region is fundamentally nonequilibrium. To this end we consider a hybrid model that treats the cathode fall region kinetically but retains a hydrodynamic description for the region between the thin cathode fall layer and the anode. Using this hybrid model, a helium discharge system excited at dc is studied numerically for a very wide current density range that spans from Townsend dark discharge, through normal glow discharge, to abnormal glow discharge. Numerical results confirm many distinct characteristics of glow discharges and compare well with that of low-pressure glow discharges. Generic relationships, such as that between the electric field and the current density, are also established and are in good agreement with experimental data. This hybrid model is simple and insightful as a theoretical tool for atmospheric pressure glow discharges. 2003-01-01T00:00:00Z Text Journal contribution 2134/5170 https://figshare.com/articles/journal_contribution/Cathode_fall_characteristics_in_a_dc_atmospheric_pressure_glow_discharge/9563783 CC BY-NC-ND 4.0
institution Loughborough University
collection Figshare
topic Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
spellingShingle Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
J.J. Shi
Michael G. Kong
Cathode fall characteristics in a dc atmospheric pressure glow discharge
description Atmospheric pressure glow discharges are attractive for a wide range of material-processing applications largely due to their operation flexibility afforded by removal of the vacuum system. These relatively new atmospheric plasmas are nonequilibrium plasmas with gas temperature around 100 °C and electron temperature in the 1–10 eV range. Their appearance is characteristically diffuse and uniform, and their temporal features are repetitive and stable. Of the reported numerical studies of atmospheric glow discharges, most are based on the hydrodynamic approximation in which electrons are assumed to be in equilibrium with the local electric field. Spectroscopic and electrical measurements suggest however that the cathode fall region is fundamentally nonequilibrium. To this end we consider a hybrid model that treats the cathode fall region kinetically but retains a hydrodynamic description for the region between the thin cathode fall layer and the anode. Using this hybrid model, a helium discharge system excited at dc is studied numerically for a very wide current density range that spans from Townsend dark discharge, through normal glow discharge, to abnormal glow discharge. Numerical results confirm many distinct characteristics of glow discharges and compare well with that of low-pressure glow discharges. Generic relationships, such as that between the electric field and the current density, are also established and are in good agreement with experimental data. This hybrid model is simple and insightful as a theoretical tool for atmospheric pressure glow discharges.
format Default
Article
author J.J. Shi
Michael G. Kong
author_facet J.J. Shi
Michael G. Kong
author_sort J.J. Shi (7129856)
title Cathode fall characteristics in a dc atmospheric pressure glow discharge
title_short Cathode fall characteristics in a dc atmospheric pressure glow discharge
title_full Cathode fall characteristics in a dc atmospheric pressure glow discharge
title_fullStr Cathode fall characteristics in a dc atmospheric pressure glow discharge
title_full_unstemmed Cathode fall characteristics in a dc atmospheric pressure glow discharge
title_sort cathode fall characteristics in a dc atmospheric pressure glow discharge
publishDate 2003
url https://hdl.handle.net/2134/5170
_version_ 1797834204451438592