Emergence in active networks

Any complex system may potentially exhibit unpredicted and undesirable behaviour as a result of certain combinations of input stimuli. An Active Network, being a communication network in which user requested operations are undertaken in the netwOIk nodes themselves, is a candidate to exhibit such be...

Full description

Saved in:
Bibliographic Details
Main Author: M. Shirantha de Silva
Format: Default Thesis
Published: 2004
Subjects:
Online Access:https://hdl.handle.net/2134/14704
Tags: Add Tag
No Tags, Be the first to tag this record!
id rr-article-9521600
record_format Figshare
spelling rr-article-95216002004-01-01T00:00:00Z Emergence in active networks M. Shirantha de Silva (7169504) Mechanical engineering not elsewhere classified untagged Mechanical Engineering not elsewhere classified Any complex system may potentially exhibit unpredicted and undesirable behaviour as a result of certain combinations of input stimuli. An Active Network, being a communication network in which user requested operations are undertaken in the netwOIk nodes themselves, is a candidate to exhibit such behaviour. For example, resource utilisation will be influenced by the specific combination of activities triggered by the users and may develop undesirable characteristics such as a self-sustaining profile. Conventional simulation tools do not detect such characteristics. This thesis proposes a solution based on a Petri-Net model in which the resource utilisation of the Active Network is abstracted above the link level communication element. It is then suggested that a certain type of Emergence in resource utilisation may manifest itself as Self-Similarity. The Hurst Parameter (H) of the resource utilisation profile for each node in the network can then be used to identify the presence of this characteristic. The RlS Statistic is used to estimate sets of H values for a range of different Active Application scenarios. It is subsequently seen that a self-sustaining resource utilisation profile (termed a "Cascading Effect") occurs when a significant subset of the nodes display high values of H. This thesis takes the view that Emergence in Active Networks is a problem that has to be approached with a global comprehension of the system as opposed to the conventional approach of a piecemeal development of solutions. This view is reinforced by the hypothesis that an Active Network is a Complex System and Emergence is noncomplex self-organisation within it. It proposes that the high-level abstraction of the Active Network forms a view by which global comprehension can be obtained and is used for the detection of anomalous behaviour (Le. Emergence). The key enabler for self-organisation is proposed to be 'the resources' within the Active Network nodes and hence the detection technique was focused on the utilisation characteristics of these. 2004-01-01T00:00:00Z Text Thesis 2134/14704 https://figshare.com/articles/thesis/Emergence_in_active_networks/9521600 CC BY-NC-ND 4.0
institution Loughborough University
collection Figshare
topic Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
spellingShingle Mechanical engineering not elsewhere classified
untagged
Mechanical Engineering not elsewhere classified
M. Shirantha de Silva
Emergence in active networks
description Any complex system may potentially exhibit unpredicted and undesirable behaviour as a result of certain combinations of input stimuli. An Active Network, being a communication network in which user requested operations are undertaken in the netwOIk nodes themselves, is a candidate to exhibit such behaviour. For example, resource utilisation will be influenced by the specific combination of activities triggered by the users and may develop undesirable characteristics such as a self-sustaining profile. Conventional simulation tools do not detect such characteristics. This thesis proposes a solution based on a Petri-Net model in which the resource utilisation of the Active Network is abstracted above the link level communication element. It is then suggested that a certain type of Emergence in resource utilisation may manifest itself as Self-Similarity. The Hurst Parameter (H) of the resource utilisation profile for each node in the network can then be used to identify the presence of this characteristic. The RlS Statistic is used to estimate sets of H values for a range of different Active Application scenarios. It is subsequently seen that a self-sustaining resource utilisation profile (termed a "Cascading Effect") occurs when a significant subset of the nodes display high values of H. This thesis takes the view that Emergence in Active Networks is a problem that has to be approached with a global comprehension of the system as opposed to the conventional approach of a piecemeal development of solutions. This view is reinforced by the hypothesis that an Active Network is a Complex System and Emergence is noncomplex self-organisation within it. It proposes that the high-level abstraction of the Active Network forms a view by which global comprehension can be obtained and is used for the detection of anomalous behaviour (Le. Emergence). The key enabler for self-organisation is proposed to be 'the resources' within the Active Network nodes and hence the detection technique was focused on the utilisation characteristics of these.
format Default
Thesis
author M. Shirantha de Silva
author_facet M. Shirantha de Silva
author_sort M. Shirantha de Silva (7169504)
title Emergence in active networks
title_short Emergence in active networks
title_full Emergence in active networks
title_fullStr Emergence in active networks
title_full_unstemmed Emergence in active networks
title_sort emergence in active networks
publishDate 2004
url https://hdl.handle.net/2134/14704
_version_ 1796650623361351680