Quasi-invariant Hermite polynomials and Lassalle-Nekrasov correspondence

Lassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero–Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasiinvariant ex...

Full description

Saved in:
Bibliographic Details
Main Authors: Misha Feigin, Martin Hallnas, Alexander Veselov
Format: Default Article
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/2134/13712527.v1
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero–Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasiinvariant extension. More specifically, we consider configurations A of real hyperplanes with multiplicities admitting the rational Baker–Akhiezer function and use this to introduce a new class of non-symmetric polynomials, which we call A-Hermite polynomials. These polynomials form a linear basis in the space of A-quasiinvariants, which is an eigenbasis for the corresponding generalised rational Calogero–Moser operator with harmonic term. In the case of the Coxeter configuration of type AN this leads to a quasi-invariant version of the Lassalle– Nekrasov correspondence and its higher order analogues.