Hot microbubble air-stripping of dilute ethanol-water mixtures

Product inhibition and the cost of downstream separations are two main barriers in using lignocellulosic biomass for bioethanol production. If bioethanol can be continuously removed from fermentation broth without affecting the fermentation process, significant gains can be achieved with bioethanol...

Full description

Saved in:
Bibliographic Details
Main Authors: Joseph Calverley, William B Zimmerman, David J Leak, Hemaka Bandulasena
Format: Default Article
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/2134/13042589.v1
Tags: Add Tag
No Tags, Be the first to tag this record!
id rr-article-13042589
record_format Figshare
spelling rr-article-130425892020-10-15T00:00:00Z Hot microbubble air-stripping of dilute ethanol-water mixtures Joseph Calverley (2865242) William B Zimmerman (9454037) David J Leak (9454040) Hemaka Bandulasena (1247538) Chemical Engineering Chemical Sciences Engineering Product inhibition and the cost of downstream separations are two main barriers in using lignocellulosic biomass for bioethanol production. If bioethanol can be continuously removed from fermentation broth without affecting the fermentation process, significant gains can be achieved with bioethanol yields and process efficiency. Hot microbubble clouds generated by energy efficient means have been used to remove ethanol from dilute ethanol-water mixtures (~4% [v/v]) maintained at 60oC, and the effect of key operating parameters on the stripping rate has been studied. Numerical simulations of a hot microbubble rising in a dilute ethanol-water mixture was also performed to understand the instantaneous concentrations within the gas phase. Increasing the inlet gas temperature from 90oC to 150oC and decreasing the liquid height in the unit from 50 mm to 5 mm both increased the ethanol stripping rate. However, the benefit of increasing the gas temperature for maximum ethanol removal depended on the liquid height in the unit. Under all operating conditions, ethanol concentration was reduced below ~2% [v/v] within ~25 minutes of operation, demonstrating the potential of hot microbubble stripping for product removal from lignocellulosic fermenters. Implemented effectively in a fermenter, this technology could intensify the bioethanol production process and improve process economics. 2020-10-15T00:00:00Z Text Journal contribution 2134/13042589.v1 https://figshare.com/articles/journal_contribution/Hot_microbubble_air-stripping_of_dilute_ethanol-water_mixtures/13042589 CC BY 4.0
institution Loughborough University
collection Figshare
topic Chemical Engineering
Chemical Sciences
Engineering
spellingShingle Chemical Engineering
Chemical Sciences
Engineering
Joseph Calverley
William B Zimmerman
David J Leak
Hemaka Bandulasena
Hot microbubble air-stripping of dilute ethanol-water mixtures
description Product inhibition and the cost of downstream separations are two main barriers in using lignocellulosic biomass for bioethanol production. If bioethanol can be continuously removed from fermentation broth without affecting the fermentation process, significant gains can be achieved with bioethanol yields and process efficiency. Hot microbubble clouds generated by energy efficient means have been used to remove ethanol from dilute ethanol-water mixtures (~4% [v/v]) maintained at 60oC, and the effect of key operating parameters on the stripping rate has been studied. Numerical simulations of a hot microbubble rising in a dilute ethanol-water mixture was also performed to understand the instantaneous concentrations within the gas phase. Increasing the inlet gas temperature from 90oC to 150oC and decreasing the liquid height in the unit from 50 mm to 5 mm both increased the ethanol stripping rate. However, the benefit of increasing the gas temperature for maximum ethanol removal depended on the liquid height in the unit. Under all operating conditions, ethanol concentration was reduced below ~2% [v/v] within ~25 minutes of operation, demonstrating the potential of hot microbubble stripping for product removal from lignocellulosic fermenters. Implemented effectively in a fermenter, this technology could intensify the bioethanol production process and improve process economics.
format Default
Article
author Joseph Calverley
William B Zimmerman
David J Leak
Hemaka Bandulasena
author_facet Joseph Calverley
William B Zimmerman
David J Leak
Hemaka Bandulasena
author_sort Joseph Calverley (2865242)
title Hot microbubble air-stripping of dilute ethanol-water mixtures
title_short Hot microbubble air-stripping of dilute ethanol-water mixtures
title_full Hot microbubble air-stripping of dilute ethanol-water mixtures
title_fullStr Hot microbubble air-stripping of dilute ethanol-water mixtures
title_full_unstemmed Hot microbubble air-stripping of dilute ethanol-water mixtures
title_sort hot microbubble air-stripping of dilute ethanol-water mixtures
publishDate 2020
url https://hdl.handle.net/2134/13042589.v1
_version_ 1797459499402919936