Numerical studies of turbulent premixed flame interaction with repeated solid obstacles

This paper presents numerical simulations of hydrogen and propane turbulent premixed flames interaction with repeated solid obstructions. The laboratory-scale combustion chamber used in this study is equipped with three solid baffles which promote the generation of turbulence and a square obstacle l...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed Elshimy, Salah Ibrahim, Weeratunge Malalasekera
Format: Default Conference proceeding
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/2134/12746822.v1
Tags: Add Tag
No Tags, Be the first to tag this record!
id rr-article-12746822
record_format Figshare
spelling rr-article-127468222020-11-17T00:00:00Z Numerical studies of turbulent premixed flame interaction with repeated solid obstacles Mohamed Elshimy (5804771) Salah Ibrahim (1250199) Weeratunge Malalasekera (1258755) Combustion Hydrogen Dynamic flame surface density Large eddy simulation Area blockage ratio Overpressure Computational fluid dynamics This paper presents numerical simulations of hydrogen and propane turbulent premixed flames interaction with repeated solid obstructions. The laboratory-scale combustion chamber used in this study is equipped with three solid baffles which promote the generation of turbulence and a square obstacle located downstream from the ignition source. The test cases considered have two different area blockage ratios (ABR) of 24% and 50%, respectively. The large eddy simulation (LES) turbulence modelling technique is used. The numerical simulations are carried out using an in-house computational fluid dynamics (CFD) model. Two different flow configurations are examined, both using three consecutive baffles to identify the subsequent effects and the sensitivity of each fuel to increasing the ABR. These effects are studied using the nature of the flame-obstacles interaction, generated combustion overpressure and resultant flame speed. The modelling capability is confirmed by validating the numerical results against published experimental data. Conclusions are drawn that increasing the ABR increases the combustion overpressure, rate of pressure rise and flame speed. It is also concluded that the larger obstacle has a significant effect on the propagating flame structure and that hydrogen flames are more sensitive to an increased ABR and produce a significantly higher peak overpressure. 2020-11-17T00:00:00Z Text Conference contribution 2134/12746822.v1 https://figshare.com/articles/conference_contribution/Numerical_studies_of_turbulent_premixed_flame_interaction_with_repeated_solid_obstacles/12746822 CC BY 3.0
institution Loughborough University
collection Figshare
topic Combustion
Hydrogen
Dynamic flame surface density
Large eddy simulation
Area blockage ratio
Overpressure
Computational fluid dynamics
spellingShingle Combustion
Hydrogen
Dynamic flame surface density
Large eddy simulation
Area blockage ratio
Overpressure
Computational fluid dynamics
Mohamed Elshimy
Salah Ibrahim
Weeratunge Malalasekera
Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
description This paper presents numerical simulations of hydrogen and propane turbulent premixed flames interaction with repeated solid obstructions. The laboratory-scale combustion chamber used in this study is equipped with three solid baffles which promote the generation of turbulence and a square obstacle located downstream from the ignition source. The test cases considered have two different area blockage ratios (ABR) of 24% and 50%, respectively. The large eddy simulation (LES) turbulence modelling technique is used. The numerical simulations are carried out using an in-house computational fluid dynamics (CFD) model. Two different flow configurations are examined, both using three consecutive baffles to identify the subsequent effects and the sensitivity of each fuel to increasing the ABR. These effects are studied using the nature of the flame-obstacles interaction, generated combustion overpressure and resultant flame speed. The modelling capability is confirmed by validating the numerical results against published experimental data. Conclusions are drawn that increasing the ABR increases the combustion overpressure, rate of pressure rise and flame speed. It is also concluded that the larger obstacle has a significant effect on the propagating flame structure and that hydrogen flames are more sensitive to an increased ABR and produce a significantly higher peak overpressure.
format Default
Conference proceeding
author Mohamed Elshimy
Salah Ibrahim
Weeratunge Malalasekera
author_facet Mohamed Elshimy
Salah Ibrahim
Weeratunge Malalasekera
author_sort Mohamed Elshimy (5804771)
title Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
title_short Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
title_full Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
title_fullStr Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
title_full_unstemmed Numerical studies of turbulent premixed flame interaction with repeated solid obstacles
title_sort numerical studies of turbulent premixed flame interaction with repeated solid obstacles
publishDate 2020
url https://hdl.handle.net/2134/12746822.v1
_version_ 1797277777960894464