Loading…

Electrostatic shape energy differences of one-dimensional line charges

We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional cu...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physics 2022-09, Vol.90 (9), p.682-687
Main Author: Majic, Matt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3
cites cdi_FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3
container_end_page 687
container_issue 9
container_start_page 682
container_title American journal of physics
container_volume 90
creator Majic, Matt
description We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional curve, for example, thin wires, thin strips, or chains of close point charges. In each model, the energy diverges logarithmically as the geometry approaches a perfect one-dimensional curve, but the energy also contains a finite term depending on the shape of the line—the “shape energy.” The difference in shape energy between a straight line and a circle is checked to be the same using a range of models. To calculate the shape energy of more complex shapes numerically, we propose a line integral where the singularity in the integrand is canceled. This integral is used to calculate the shape energy of a helix.
doi_str_mv 10.1119/5.0079100
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1119_5_0079100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708391805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrJDHN5iilVaHgRc8hm520KdukJttD394t7bmnmYGPn_k_Qh4ZTBhj-lVOAJRmAFdkxPSbqLgGfU1GAMArLUHekrtSNsOpWQ0jsph36PqcSm_74GhZ2x1SjJhXB9oG7zFjdFho8jRFrNqwxVhCirajXYhI3drmFZZ7cuNtV_DhPMfkdzH_mX1Wy--Pr9n7snKc877yjWDIhWykHbbGKVVLaFUjVW1rDcoy4ZqplbLWjdWCQ6tVK610XjjHpyjG5OmUu8vpb4-lN5u0z8M3xXAFtTiWkgP1fKLcUKxk9GaXw9bmg2FgjpqMNGdNA_tyYosLRwcpXoD_AelhZsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708391805</pqid></control><display><type>article</type><title>Electrostatic shape energy differences of one-dimensional line charges</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Majic, Matt</creator><creatorcontrib>Majic, Matt</creatorcontrib><description>We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional curve, for example, thin wires, thin strips, or chains of close point charges. In each model, the energy diverges logarithmically as the geometry approaches a perfect one-dimensional curve, but the energy also contains a finite term depending on the shape of the line—the “shape energy.” The difference in shape energy between a straight line and a circle is checked to be the same using a range of models. To calculate the shape energy of more complex shapes numerically, we propose a line integral where the singularity in the integrand is canceled. This integral is used to calculate the shape energy of a helix.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/5.0079100</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Electrostatics ; Energy ; Geometry</subject><ispartof>American journal of physics, 2022-09, Vol.90 (9), p.682-687</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Sep 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3</citedby><cites>FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3</cites><orcidid>0000-0003-2531-1553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids></links><search><creatorcontrib>Majic, Matt</creatorcontrib><title>Electrostatic shape energy differences of one-dimensional line charges</title><title>American journal of physics</title><description>We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional curve, for example, thin wires, thin strips, or chains of close point charges. In each model, the energy diverges logarithmically as the geometry approaches a perfect one-dimensional curve, but the energy also contains a finite term depending on the shape of the line—the “shape energy.” The difference in shape energy between a straight line and a circle is checked to be the same using a range of models. To calculate the shape energy of more complex shapes numerically, we propose a line integral where the singularity in the integrand is canceled. This integral is used to calculate the shape energy of a helix.</description><subject>Electrostatics</subject><subject>Energy</subject><subject>Geometry</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH3yDgSWHrJDHN5iilVaHgRc8hm520KdukJttD394t7bmnmYGPn_k_Qh4ZTBhj-lVOAJRmAFdkxPSbqLgGfU1GAMArLUHekrtSNsOpWQ0jsph36PqcSm_74GhZ2x1SjJhXB9oG7zFjdFho8jRFrNqwxVhCirajXYhI3drmFZZ7cuNtV_DhPMfkdzH_mX1Wy--Pr9n7snKc877yjWDIhWykHbbGKVVLaFUjVW1rDcoy4ZqplbLWjdWCQ6tVK610XjjHpyjG5OmUu8vpb4-lN5u0z8M3xXAFtTiWkgP1fKLcUKxk9GaXw9bmg2FgjpqMNGdNA_tyYosLRwcpXoD_AelhZsk</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Majic, Matt</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2531-1553</orcidid></search><sort><creationdate>202209</creationdate><title>Electrostatic shape energy differences of one-dimensional line charges</title><author>Majic, Matt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electrostatics</topic><topic>Energy</topic><topic>Geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majic, Matt</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majic, Matt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic shape energy differences of one-dimensional line charges</atitle><jtitle>American journal of physics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>90</volume><issue>9</issue><spage>682</spage><epage>687</epage><pages>682-687</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional curve, for example, thin wires, thin strips, or chains of close point charges. In each model, the energy diverges logarithmically as the geometry approaches a perfect one-dimensional curve, but the energy also contains a finite term depending on the shape of the line—the “shape energy.” The difference in shape energy between a straight line and a circle is checked to be the same using a range of models. To calculate the shape energy of more complex shapes numerically, we propose a line integral where the singularity in the integrand is canceled. This integral is used to calculate the shape energy of a helix.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/5.0079100</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2531-1553</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2022-09, Vol.90 (9), p.682-687
issn 0002-9505
1943-2909
language eng
recordid cdi_scitation_primary_10_1119_5_0079100
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Electrostatics
Energy
Geometry
title Electrostatic shape energy differences of one-dimensional line charges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T05%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20shape%20energy%20differences%20of%20one-dimensional%20line%20charges&rft.jtitle=American%20journal%20of%20physics&rft.au=Majic,%20Matt&rft.date=2022-09&rft.volume=90&rft.issue=9&rft.spage=682&rft.epage=687&rft.pages=682-687&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/5.0079100&rft_dat=%3Cproquest_scita%3E2708391805%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c222t-fb31e235b5ab31bc77850d7b578a8907a13cb6a5589ba9320d97d5a5cf3cc26e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2708391805&rft_id=info:pmid/&rfr_iscdi=true