Loading…

Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye

Non-invasive imaging plays a crucial role in diagnosing and studying eye diseases. However, existing photoacoustic ophthalmoscopy (PAOM) techniques in mice have limitations due to handling restrictions, suboptimal optical properties, limited availability of light sources, and permissible light fluen...

Full description

Saved in:
Bibliographic Details
Published in:APL photonics 2023-10, Vol.8 (10), p.106108-106108-11
Main Authors: Haindl, R., Bellemo, V., Rajendran, P., Tan, B., Liu, M., Lee, B. S., Zhou, Q., Leitgeb, R. A., Drexler, W., Schmetterer, L., Pramanik, M.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-811a905c4758ddf5e775ceb4cccd38013c6280f99cd4f90f5a94f78ed7a3bc353
container_end_page 106108-11
container_issue 10
container_start_page 106108
container_title APL photonics
container_volume 8
creator Haindl, R.
Bellemo, V.
Rajendran, P.
Tan, B.
Liu, M.
Lee, B. S.
Zhou, Q.
Leitgeb, R. A.
Drexler, W.
Schmetterer, L.
Pramanik, M.
description Non-invasive imaging plays a crucial role in diagnosing and studying eye diseases. However, existing photoacoustic ophthalmoscopy (PAOM) techniques in mice have limitations due to handling restrictions, suboptimal optical properties, limited availability of light sources, and permissible light fluence at the retina. This study introduces an innovative approach that utilizes Rose Bengal, a contrast agent, to enhance PAOM contrast. This enables visualization of deeper structures, such as the choroidal vasculature and sclera in the mouse eye, using visible light. The integration of near-infrared-II (NIR-II) optical coherence tomography provides additional tissue contrast and insights into potential NIR-II PAOM capabilities. To optimize imaging, we developed a cost-effective 3D printable mouse eye phantom and a fully 3D printable tip/tilt mouse platform. This solution elevates PAOM to a user-friendly technology, which can be used to address pressing research questions concerning several ocular diseases, such as myopia, glaucoma, and/or age-related macular degeneration in the future.
doi_str_mv 10.1063/5.0168091
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_5_0168091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c6e432b02d5d4566a9fdb9b8ff5bdd1e</doaj_id><sourcerecordid>app</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-811a905c4758ddf5e775ceb4cccd38013c6280f99cd4f90f5a94f78ed7a3bc353</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYsoOOgs_AfZKlSTpmmbpYgfA4IbdVteX16mGdqmJHEx_97qiLhydR-Xw-Fxs-xC8GvBK3mjrrmoGq7FUbYqZN3kXFf18Z_7NFvHuON8wWqhS7XKxncXXTcQG9y2T2zuffKA_iMmh8zPfephGH1EP-8ZTIZNBCF3kw0QyOSbzcIsJAwMfU-BJiSW_Oi3AeZ-z9zEUk9sXHzEaE_n2YmFIdL6J8-yt4f717un_PnlcXN3-5yjLFTKGyFAc4VlrRpjrKK6VkhdiYhGNlxIrIqGW63RlFZzq0CXtm7I1CA7lEqeZZuD13jYtXNwI4R968G134UP2xbC8vdALVZUyqLjhVGmVFUF2ppOd421qjNG0OK6PLgw-BgD2V-f4O3X7K1qf2Zf2KsDG9ElSM5P_8CfRFqEjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye</title><source>AIP Open Access Journals</source><creator>Haindl, R. ; Bellemo, V. ; Rajendran, P. ; Tan, B. ; Liu, M. ; Lee, B. S. ; Zhou, Q. ; Leitgeb, R. A. ; Drexler, W. ; Schmetterer, L. ; Pramanik, M.</creator><creatorcontrib>Haindl, R. ; Bellemo, V. ; Rajendran, P. ; Tan, B. ; Liu, M. ; Lee, B. S. ; Zhou, Q. ; Leitgeb, R. A. ; Drexler, W. ; Schmetterer, L. ; Pramanik, M.</creatorcontrib><description>Non-invasive imaging plays a crucial role in diagnosing and studying eye diseases. However, existing photoacoustic ophthalmoscopy (PAOM) techniques in mice have limitations due to handling restrictions, suboptimal optical properties, limited availability of light sources, and permissible light fluence at the retina. This study introduces an innovative approach that utilizes Rose Bengal, a contrast agent, to enhance PAOM contrast. This enables visualization of deeper structures, such as the choroidal vasculature and sclera in the mouse eye, using visible light. The integration of near-infrared-II (NIR-II) optical coherence tomography provides additional tissue contrast and insights into potential NIR-II PAOM capabilities. To optimize imaging, we developed a cost-effective 3D printable mouse eye phantom and a fully 3D printable tip/tilt mouse platform. This solution elevates PAOM to a user-friendly technology, which can be used to address pressing research questions concerning several ocular diseases, such as myopia, glaucoma, and/or age-related macular degeneration in the future.</description><identifier>ISSN: 2378-0967</identifier><identifier>EISSN: 2378-0967</identifier><identifier>DOI: 10.1063/5.0168091</identifier><identifier>CODEN: APPHD2</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL photonics, 2023-10, Vol.8 (10), p.106108-106108-11</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-811a905c4758ddf5e775ceb4cccd38013c6280f99cd4f90f5a94f78ed7a3bc353</cites><orcidid>0000-0002-3557-6398 ; 0000-0003-2865-5714 ; 0000-0003-3471-0986 ; 0009-0007-0180-9193 ; 0000-0001-7878-9847 ; 0000-0002-0131-4111 ; 0000-0002-7189-1707 ; 0000-0003-1104-9486 ; 0000-0002-8862-5966 ; 0000-0002-6532-9603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/app/article-lookup/doi/10.1063/5.0168091$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>315,786,790,27923,27957,27958,76766</link.rule.ids></links><search><creatorcontrib>Haindl, R.</creatorcontrib><creatorcontrib>Bellemo, V.</creatorcontrib><creatorcontrib>Rajendran, P.</creatorcontrib><creatorcontrib>Tan, B.</creatorcontrib><creatorcontrib>Liu, M.</creatorcontrib><creatorcontrib>Lee, B. S.</creatorcontrib><creatorcontrib>Zhou, Q.</creatorcontrib><creatorcontrib>Leitgeb, R. A.</creatorcontrib><creatorcontrib>Drexler, W.</creatorcontrib><creatorcontrib>Schmetterer, L.</creatorcontrib><creatorcontrib>Pramanik, M.</creatorcontrib><title>Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye</title><title>APL photonics</title><description>Non-invasive imaging plays a crucial role in diagnosing and studying eye diseases. However, existing photoacoustic ophthalmoscopy (PAOM) techniques in mice have limitations due to handling restrictions, suboptimal optical properties, limited availability of light sources, and permissible light fluence at the retina. This study introduces an innovative approach that utilizes Rose Bengal, a contrast agent, to enhance PAOM contrast. This enables visualization of deeper structures, such as the choroidal vasculature and sclera in the mouse eye, using visible light. The integration of near-infrared-II (NIR-II) optical coherence tomography provides additional tissue contrast and insights into potential NIR-II PAOM capabilities. To optimize imaging, we developed a cost-effective 3D printable mouse eye phantom and a fully 3D printable tip/tilt mouse platform. This solution elevates PAOM to a user-friendly technology, which can be used to address pressing research questions concerning several ocular diseases, such as myopia, glaucoma, and/or age-related macular degeneration in the future.</description><issn>2378-0967</issn><issn>2378-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LxDAURYsoOOgs_AfZKlSTpmmbpYgfA4IbdVteX16mGdqmJHEx_97qiLhydR-Xw-Fxs-xC8GvBK3mjrrmoGq7FUbYqZN3kXFf18Z_7NFvHuON8wWqhS7XKxncXXTcQG9y2T2zuffKA_iMmh8zPfephGH1EP-8ZTIZNBCF3kw0QyOSbzcIsJAwMfU-BJiSW_Oi3AeZ-z9zEUk9sXHzEaE_n2YmFIdL6J8-yt4f717un_PnlcXN3-5yjLFTKGyFAc4VlrRpjrKK6VkhdiYhGNlxIrIqGW63RlFZzq0CXtm7I1CA7lEqeZZuD13jYtXNwI4R968G134UP2xbC8vdALVZUyqLjhVGmVFUF2ppOd421qjNG0OK6PLgw-BgD2V-f4O3X7K1qf2Zf2KsDG9ElSM5P_8CfRFqEjw</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Haindl, R.</creator><creator>Bellemo, V.</creator><creator>Rajendran, P.</creator><creator>Tan, B.</creator><creator>Liu, M.</creator><creator>Lee, B. S.</creator><creator>Zhou, Q.</creator><creator>Leitgeb, R. A.</creator><creator>Drexler, W.</creator><creator>Schmetterer, L.</creator><creator>Pramanik, M.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3557-6398</orcidid><orcidid>https://orcid.org/0000-0003-2865-5714</orcidid><orcidid>https://orcid.org/0000-0003-3471-0986</orcidid><orcidid>https://orcid.org/0009-0007-0180-9193</orcidid><orcidid>https://orcid.org/0000-0001-7878-9847</orcidid><orcidid>https://orcid.org/0000-0002-0131-4111</orcidid><orcidid>https://orcid.org/0000-0002-7189-1707</orcidid><orcidid>https://orcid.org/0000-0003-1104-9486</orcidid><orcidid>https://orcid.org/0000-0002-8862-5966</orcidid><orcidid>https://orcid.org/0000-0002-6532-9603</orcidid></search><sort><creationdate>20231001</creationdate><title>Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye</title><author>Haindl, R. ; Bellemo, V. ; Rajendran, P. ; Tan, B. ; Liu, M. ; Lee, B. S. ; Zhou, Q. ; Leitgeb, R. A. ; Drexler, W. ; Schmetterer, L. ; Pramanik, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-811a905c4758ddf5e775ceb4cccd38013c6280f99cd4f90f5a94f78ed7a3bc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haindl, R.</creatorcontrib><creatorcontrib>Bellemo, V.</creatorcontrib><creatorcontrib>Rajendran, P.</creatorcontrib><creatorcontrib>Tan, B.</creatorcontrib><creatorcontrib>Liu, M.</creatorcontrib><creatorcontrib>Lee, B. S.</creatorcontrib><creatorcontrib>Zhou, Q.</creatorcontrib><creatorcontrib>Leitgeb, R. A.</creatorcontrib><creatorcontrib>Drexler, W.</creatorcontrib><creatorcontrib>Schmetterer, L.</creatorcontrib><creatorcontrib>Pramanik, M.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haindl, R.</au><au>Bellemo, V.</au><au>Rajendran, P.</au><au>Tan, B.</au><au>Liu, M.</au><au>Lee, B. S.</au><au>Zhou, Q.</au><au>Leitgeb, R. A.</au><au>Drexler, W.</au><au>Schmetterer, L.</au><au>Pramanik, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye</atitle><jtitle>APL photonics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>8</volume><issue>10</issue><spage>106108</spage><epage>106108-11</epage><pages>106108-106108-11</pages><issn>2378-0967</issn><eissn>2378-0967</eissn><coden>APPHD2</coden><abstract>Non-invasive imaging plays a crucial role in diagnosing and studying eye diseases. However, existing photoacoustic ophthalmoscopy (PAOM) techniques in mice have limitations due to handling restrictions, suboptimal optical properties, limited availability of light sources, and permissible light fluence at the retina. This study introduces an innovative approach that utilizes Rose Bengal, a contrast agent, to enhance PAOM contrast. This enables visualization of deeper structures, such as the choroidal vasculature and sclera in the mouse eye, using visible light. The integration of near-infrared-II (NIR-II) optical coherence tomography provides additional tissue contrast and insights into potential NIR-II PAOM capabilities. To optimize imaging, we developed a cost-effective 3D printable mouse eye phantom and a fully 3D printable tip/tilt mouse platform. This solution elevates PAOM to a user-friendly technology, which can be used to address pressing research questions concerning several ocular diseases, such as myopia, glaucoma, and/or age-related macular degeneration in the future.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/5.0168091</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3557-6398</orcidid><orcidid>https://orcid.org/0000-0003-2865-5714</orcidid><orcidid>https://orcid.org/0000-0003-3471-0986</orcidid><orcidid>https://orcid.org/0009-0007-0180-9193</orcidid><orcidid>https://orcid.org/0000-0001-7878-9847</orcidid><orcidid>https://orcid.org/0000-0002-0131-4111</orcidid><orcidid>https://orcid.org/0000-0002-7189-1707</orcidid><orcidid>https://orcid.org/0000-0003-1104-9486</orcidid><orcidid>https://orcid.org/0000-0002-8862-5966</orcidid><orcidid>https://orcid.org/0000-0002-6532-9603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2378-0967
ispartof APL photonics, 2023-10, Vol.8 (10), p.106108-106108-11
issn 2378-0967
2378-0967
language eng
recordid cdi_scitation_primary_10_1063_5_0168091
source AIP Open Access Journals
title Visible light photoacoustic ophthalmoscopy and near-infrared-II optical coherence tomography in the mouse eye
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light%20photoacoustic%20ophthalmoscopy%20and%20near-infrared-II%20optical%20coherence%20tomography%20in%20the%20mouse%20eye&rft.jtitle=APL%20photonics&rft.au=Haindl,%20R.&rft.date=2023-10-01&rft.volume=8&rft.issue=10&rft.spage=106108&rft.epage=106108-11&rft.pages=106108-106108-11&rft.issn=2378-0967&rft.eissn=2378-0967&rft.coden=APPHD2&rft_id=info:doi/10.1063/5.0168091&rft_dat=%3Cscitation_cross%3Eapp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-811a905c4758ddf5e775ceb4cccd38013c6280f99cd4f90f5a94f78ed7a3bc353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true