Loading…

High energy electron diffraction instrument with tunable camera length

Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge...

Full description

Saved in:
Bibliographic Details
Published in:Structural dynamics (Melville, N.Y.) N.Y.), 2024-03, Vol.11 (2), p.024302-024302
Main Authors: Denham, P., Yang, Y., Guo, V., Fisher, A., Shen, X., Xu, T., England, R. J., Li, R. K., Musumeci, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3
container_end_page 024302
container_issue 2
container_start_page 024302
container_title Structural dynamics (Melville, N.Y.)
container_volume 11
creator Denham, P.
Yang, Y.
Guo, V.
Fisher, A.
Shen, X.
Xu, T.
England, R. J.
Li, R. K.
Musumeci, P.
description Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (>500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.
doi_str_mv 10.1063/4.0000240
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_scitation_primary_10_1063_4_0000240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d1fa517167ac424cb60bf98291cf58c6</doaj_id><sourcerecordid>3027947465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</originalsourceid><addsrcrecordid>eNp9ks9vFSEQgDdGY5vag_-A2ehFm7zKr4XlZExjbZMmXvRMgB12edkHFVhN_3t57rNpe5ALhPnyMTNM07zG6BwjTj-yc1QXYehZc0wokRshRP_8wfmoOc15WxmMSScYfdkc0b6rUcKOm8srP04tBEjjXQsz2JJiaAfvXNK2-Hr2IZe07CCU9rcvU1uWoM0MrdU7SLqdIYxletW8cHrOcHrYT5ofl1--X1xtbr59vb74fLOxTJKyoVS7jjPjXC8p7yw3RJpuAEyE650AxDXjxkCvB0d6K-hAa9BBJxkShgE9aa5X7xD1Vt0mv9PpTkXt1d-LmEalU_F2BjVgpzssMBfaMsKs4cg42ROJret6y6vr0-q6XcwOBlsrTHp-JH0cCX5SY_ylMJK8I0xUw9vVEHPxKltfwE42hlDbqAiVvEd76P3hmRR_LpCL2vlsYZ51gLhkRRGijNau9BV99wTdxiWF2tBKESGZYLyr1IeVsinmnMDdp4yR2o-EYuowEpV987DGe_LfAFTgbAX22ev9h__H9geaq712</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3027947465</pqid></control><display><type>article</type><title>High energy electron diffraction instrument with tunable camera length</title><source>Publicly Available Content Database</source><source>AIP Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P.</creator><creatorcontrib>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (&gt;500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</description><identifier>ISSN: 2329-7778</identifier><identifier>EISSN: 2329-7778</identifier><identifier>DOI: 10.1063/4.0000240</identifier><identifier>PMID: 38532924</identifier><identifier>CODEN: SDTYAE</identifier><language>eng</language><publisher>United States: American Institute of Physics, Inc</publisher><subject>Approximation ; Cameras ; crystal lattices ; Diffraction patterns ; electromagnetism ; Electron beams ; Electron diffraction ; Electrons ; Energy ; Experiments ; High energy electrons ; lenses ; Magnetic lenses ; Optics ; Optimization ; OTHER INSTRUMENTATION ; particle beam optics ; particle beam transport ; Permanent magnets ; Phase transitions ; Quadrupoles ; Sensors ; Space charge ; Telescopes ; Temporal resolution ; Triplets ; ultrafast electron diffraction</subject><ispartof>Structural dynamics (Melville, N.Y.), 2024-03, Vol.11 (2), p.024302-024302</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Author(s). 2024 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</cites><orcidid>0000-0001-8218-7347 ; 0009-0008-2654-6526 ; 0000-0003-3985-7274 ; 0000-0003-4093-0213 ; 0000-0002-6844-608X ; 0009-0000-2982-7464 ; 0000-0002-4977-7561 ; 0009-0008-4954-0151 ; 0009000029827464 ; 0000000182187347 ; 000000026844608X ; 0000000249777561 ; 0009000849540151 ; 0009000826546526 ; 0000000340930213 ; 0000000339857274</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3027947465/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3027947465?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27923,27957,27958,37047,37048,44625,53827,53829,75483,76766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38532924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2396807$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Denham, P.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Guo, V.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Xu, T.</creatorcontrib><creatorcontrib>England, R. J.</creatorcontrib><creatorcontrib>Li, R. K.</creatorcontrib><creatorcontrib>Musumeci, P.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>High energy electron diffraction instrument with tunable camera length</title><title>Structural dynamics (Melville, N.Y.)</title><addtitle>Struct Dyn</addtitle><description>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (&gt;500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</description><subject>Approximation</subject><subject>Cameras</subject><subject>crystal lattices</subject><subject>Diffraction patterns</subject><subject>electromagnetism</subject><subject>Electron beams</subject><subject>Electron diffraction</subject><subject>Electrons</subject><subject>Energy</subject><subject>Experiments</subject><subject>High energy electrons</subject><subject>lenses</subject><subject>Magnetic lenses</subject><subject>Optics</subject><subject>Optimization</subject><subject>OTHER INSTRUMENTATION</subject><subject>particle beam optics</subject><subject>particle beam transport</subject><subject>Permanent magnets</subject><subject>Phase transitions</subject><subject>Quadrupoles</subject><subject>Sensors</subject><subject>Space charge</subject><subject>Telescopes</subject><subject>Temporal resolution</subject><subject>Triplets</subject><subject>ultrafast electron diffraction</subject><issn>2329-7778</issn><issn>2329-7778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks9vFSEQgDdGY5vag_-A2ehFm7zKr4XlZExjbZMmXvRMgB12edkHFVhN_3t57rNpe5ALhPnyMTNM07zG6BwjTj-yc1QXYehZc0wokRshRP_8wfmoOc15WxmMSScYfdkc0b6rUcKOm8srP04tBEjjXQsz2JJiaAfvXNK2-Hr2IZe07CCU9rcvU1uWoM0MrdU7SLqdIYxletW8cHrOcHrYT5ofl1--X1xtbr59vb74fLOxTJKyoVS7jjPjXC8p7yw3RJpuAEyE650AxDXjxkCvB0d6K-hAa9BBJxkShgE9aa5X7xD1Vt0mv9PpTkXt1d-LmEalU_F2BjVgpzssMBfaMsKs4cg42ROJret6y6vr0-q6XcwOBlsrTHp-JH0cCX5SY_ylMJK8I0xUw9vVEHPxKltfwE42hlDbqAiVvEd76P3hmRR_LpCL2vlsYZ51gLhkRRGijNau9BV99wTdxiWF2tBKESGZYLyr1IeVsinmnMDdp4yR2o-EYuowEpV987DGe_LfAFTgbAX22ev9h__H9geaq712</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Denham, P.</creator><creator>Yang, Y.</creator><creator>Guo, V.</creator><creator>Fisher, A.</creator><creator>Shen, X.</creator><creator>Xu, T.</creator><creator>England, R. J.</creator><creator>Li, R. K.</creator><creator>Musumeci, P.</creator><general>American Institute of Physics, Inc</general><general>American Crystallographic Association/AIP</general><general>American Crystallographic Association</general><general>AIP Publishing LLC and ACA</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8218-7347</orcidid><orcidid>https://orcid.org/0009-0008-2654-6526</orcidid><orcidid>https://orcid.org/0000-0003-3985-7274</orcidid><orcidid>https://orcid.org/0000-0003-4093-0213</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0009-0000-2982-7464</orcidid><orcidid>https://orcid.org/0000-0002-4977-7561</orcidid><orcidid>https://orcid.org/0009-0008-4954-0151</orcidid><orcidid>https://orcid.org/0009000029827464</orcidid><orcidid>https://orcid.org/0000000182187347</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000249777561</orcidid><orcidid>https://orcid.org/0009000849540151</orcidid><orcidid>https://orcid.org/0009000826546526</orcidid><orcidid>https://orcid.org/0000000340930213</orcidid><orcidid>https://orcid.org/0000000339857274</orcidid></search><sort><creationdate>20240301</creationdate><title>High energy electron diffraction instrument with tunable camera length</title><author>Denham, P. ; Yang, Y. ; Guo, V. ; Fisher, A. ; Shen, X. ; Xu, T. ; England, R. J. ; Li, R. K. ; Musumeci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Cameras</topic><topic>crystal lattices</topic><topic>Diffraction patterns</topic><topic>electromagnetism</topic><topic>Electron beams</topic><topic>Electron diffraction</topic><topic>Electrons</topic><topic>Energy</topic><topic>Experiments</topic><topic>High energy electrons</topic><topic>lenses</topic><topic>Magnetic lenses</topic><topic>Optics</topic><topic>Optimization</topic><topic>OTHER INSTRUMENTATION</topic><topic>particle beam optics</topic><topic>particle beam transport</topic><topic>Permanent magnets</topic><topic>Phase transitions</topic><topic>Quadrupoles</topic><topic>Sensors</topic><topic>Space charge</topic><topic>Telescopes</topic><topic>Temporal resolution</topic><topic>Triplets</topic><topic>ultrafast electron diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denham, P.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><creatorcontrib>Guo, V.</creatorcontrib><creatorcontrib>Fisher, A.</creatorcontrib><creatorcontrib>Shen, X.</creatorcontrib><creatorcontrib>Xu, T.</creatorcontrib><creatorcontrib>England, R. J.</creatorcontrib><creatorcontrib>Li, R. K.</creatorcontrib><creatorcontrib>Musumeci, P.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Structural dynamics (Melville, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denham, P.</au><au>Yang, Y.</au><au>Guo, V.</au><au>Fisher, A.</au><au>Shen, X.</au><au>Xu, T.</au><au>England, R. J.</au><au>Li, R. K.</au><au>Musumeci, P.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High energy electron diffraction instrument with tunable camera length</atitle><jtitle>Structural dynamics (Melville, N.Y.)</jtitle><addtitle>Struct Dyn</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>024302</spage><epage>024302</epage><pages>024302-024302</pages><issn>2329-7778</issn><eissn>2329-7778</eissn><coden>SDTYAE</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>AC02-76SF00515; DMR-1548924; SC0009914; FWP 100940</notes><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES)</notes><notes>National Science Foundation (NSF)</notes><abstract>Ultrafast electron diffraction (UED) stands as a powerful technique for real-time observation of structural dynamics at the atomic level. In recent years, the use of MeV electrons from radio frequency guns has been widely adopted to take advantage of the relativistic suppression of the space charge effects that otherwise limit the temporal resolution of the technique. Nevertheless, there is not a clear choice for the optimal energy for a UED instrument. Scaling to beam energies higher than a few MeV does pose significant technical challenges, mainly related to the inherent increase in diffraction camera length associated with the smaller Bragg angles. In this study, we report a solution by using a compact post-sample magnetic optical system to magnify the diffraction pattern from a crystal Au sample illuminated by an 8.2 MeV electron beam. Our method employs, as one of the lenses of the optical system, a triplet of compact, high field gradients (&gt;500 T/m), small-gap (3.5 mm) Halbach permanent magnet quadrupoles. Shifting the relative position of the quadrupoles, we demonstrate tuning the magnification by more than a factor of two, a 6× improvement in camera length, and reciprocal space resolution better than 0.1 Å−1 in agreement with beam transport simulations.</abstract><cop>United States</cop><pub>American Institute of Physics, Inc</pub><pmid>38532924</pmid><doi>10.1063/4.0000240</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8218-7347</orcidid><orcidid>https://orcid.org/0009-0008-2654-6526</orcidid><orcidid>https://orcid.org/0000-0003-3985-7274</orcidid><orcidid>https://orcid.org/0000-0003-4093-0213</orcidid><orcidid>https://orcid.org/0000-0002-6844-608X</orcidid><orcidid>https://orcid.org/0009-0000-2982-7464</orcidid><orcidid>https://orcid.org/0000-0002-4977-7561</orcidid><orcidid>https://orcid.org/0009-0008-4954-0151</orcidid><orcidid>https://orcid.org/0009000029827464</orcidid><orcidid>https://orcid.org/0000000182187347</orcidid><orcidid>https://orcid.org/000000026844608X</orcidid><orcidid>https://orcid.org/0000000249777561</orcidid><orcidid>https://orcid.org/0009000849540151</orcidid><orcidid>https://orcid.org/0009000826546526</orcidid><orcidid>https://orcid.org/0000000340930213</orcidid><orcidid>https://orcid.org/0000000339857274</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-7778
ispartof Structural dynamics (Melville, N.Y.), 2024-03, Vol.11 (2), p.024302-024302
issn 2329-7778
2329-7778
language eng
recordid cdi_scitation_primary_10_1063_4_0000240
source Publicly Available Content Database; AIP Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Approximation
Cameras
crystal lattices
Diffraction patterns
electromagnetism
Electron beams
Electron diffraction
Electrons
Energy
Experiments
High energy electrons
lenses
Magnetic lenses
Optics
Optimization
OTHER INSTRUMENTATION
particle beam optics
particle beam transport
Permanent magnets
Phase transitions
Quadrupoles
Sensors
Space charge
Telescopes
Temporal resolution
Triplets
ultrafast electron diffraction
title High energy electron diffraction instrument with tunable camera length
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T00%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20energy%20electron%20diffraction%20instrument%20with%20tunable%20camera%20length&rft.jtitle=Structural%20dynamics%20(Melville,%20N.Y.)&rft.au=Denham,%20P.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2024-03-01&rft.volume=11&rft.issue=2&rft.spage=024302&rft.epage=024302&rft.pages=024302-024302&rft.issn=2329-7778&rft.eissn=2329-7778&rft.coden=SDTYAE&rft_id=info:doi/10.1063/4.0000240&rft_dat=%3Cproquest_scita%3E3027947465%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-33af564bff89365c6b29b5de127f8f7e06a46bbe8adf28c73d3de1fe59407b4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3027947465&rft_id=info:pmid/38532924&rfr_iscdi=true