Loading…

A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus

A model of collisional processes of hydrocarbons in hydrogen plasmas has been developed to aid in computer modeling efforts relevant to plasma–surface interactions. It includes 16 molecules (CH up to CH 4 , C 2 H to C 2 H 6 , and C 3 H to C 3 H 6 ) and four reaction types (electron impact ionization...

Full description

Saved in:
Bibliographic Details
Published in:Physics of plasmas 2000-05, Vol.7 (5), p.1421-1432
Main Authors: Alman, D. A., Ruzic, D. N., Brooks, J. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3
cites cdi_FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3
container_end_page 1432
container_issue 5
container_start_page 1421
container_title Physics of plasmas
container_volume 7
creator Alman, D. A.
Ruzic, D. N.
Brooks, J. N.
description A model of collisional processes of hydrocarbons in hydrogen plasmas has been developed to aid in computer modeling efforts relevant to plasma–surface interactions. It includes 16 molecules (CH up to CH 4 , C 2 H to C 2 H 6 , and C 3 H to C 3 H 6 ) and four reaction types (electron impact ionization/dissociative ionization, electron impact dissociation, proton impact charge exchange, and dissociative recombination). Experimental reaction rates or cross sections have been compiled, and estimates have been made for cases where these are not available. The proton impact charge exchange reaction rates are calculated from a theoretical model using molecular polarizabilities. Dissociative recombination rates are described by the equation A/T B where parameter A is fit using polarizabilities and B is estimated from known reaction rates. The electron impact ionization and dissociation cross sections are fit to known graphs using four parameters: threshold energy, maximum value of the cross section, energy at the maximum, and a constant for the exponential decay as energy increases. The model has recently been used in an analysis of the Joint European Torus [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] MARK II carbon inner divertor using the WBC Monte Carlo impurity transport code. The updated version of WBC, which includes the full set of hydrocarbon reactions, helps to explain an observed asymmetry in carbon deposition near the divertor.
doi_str_mv 10.1063/1.873960
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_scitation_primary_10_1063_1_873960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pop</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3</originalsourceid><addsrcrecordid>eNqd0M1KxDAQB_AgCq6r4CMEvOiha9KkSXpclvWLBS8reAtpkrqVtglJquzb292KD-BhmDn8ZmD-AFxjtMCIkXu8EJyUDJ2AGUaizDjj9PQwc5QxRt_PwUWMnwghygoxA34Jd3sTnFahcj0MVunUjEPnjG1h7QJs3TdMtvM2qDQEO_EP20PfqtipCFVvxoLK-7bR6ridHEw7C19c0ye4HoLzdhRbF4Z4Cc5q1UZ79dvn4O1hvV09ZZvXx-fVcpNpInjKSmpQocoiNxQXFGtWcsNzWuSkMqUxilcYYyvG7wQVPGdGCWMrUlJdGc2LmszBzXTXxdTIqJtk9U67vrc6yRzlmCGCR3U7KR1cjMHW0oemU2EvMZKHPCWWU54jvZvo4dbxzX_ZLxf-nPSmJj-BioRf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Alman, D. A. ; Ruzic, D. N. ; Brooks, J. N.</creator><creatorcontrib>Alman, D. A. ; Ruzic, D. N. ; Brooks, J. N.</creatorcontrib><description>A model of collisional processes of hydrocarbons in hydrogen plasmas has been developed to aid in computer modeling efforts relevant to plasma–surface interactions. It includes 16 molecules (CH up to CH 4 , C 2 H to C 2 H 6 , and C 3 H to C 3 H 6 ) and four reaction types (electron impact ionization/dissociative ionization, electron impact dissociation, proton impact charge exchange, and dissociative recombination). Experimental reaction rates or cross sections have been compiled, and estimates have been made for cases where these are not available. The proton impact charge exchange reaction rates are calculated from a theoretical model using molecular polarizabilities. Dissociative recombination rates are described by the equation A/T B where parameter A is fit using polarizabilities and B is estimated from known reaction rates. The electron impact ionization and dissociation cross sections are fit to known graphs using four parameters: threshold energy, maximum value of the cross section, energy at the maximum, and a constant for the exponential decay as energy increases. The model has recently been used in an analysis of the Joint European Torus [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] MARK II carbon inner divertor using the WBC Monte Carlo impurity transport code. The updated version of WBC, which includes the full set of hydrocarbon reactions, helps to explain an observed asymmetry in carbon deposition near the divertor.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.873960</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>United States</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; CROSS SECTIONS ; DISSOCIATION ; ELECTRON-MOLECULE COLLISIONS ; EXPERIMENTAL DATA ; HYDROCARBONS ; IONIZATION ; JET TOKAMAK ; PLASMA CONFINEMENT ; PLASMA DENSITY ; RECOMBINATION ; THEORETICAL DATA</subject><ispartof>Physics of plasmas, 2000-05, Vol.7 (5), p.1421-1432</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3</citedby><cites>FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.873960$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,315,786,788,790,801,891,27957,27958,76741</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/20216031$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alman, D. A.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Brooks, J. N.</creatorcontrib><title>A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus</title><title>Physics of plasmas</title><description>A model of collisional processes of hydrocarbons in hydrogen plasmas has been developed to aid in computer modeling efforts relevant to plasma–surface interactions. It includes 16 molecules (CH up to CH 4 , C 2 H to C 2 H 6 , and C 3 H to C 3 H 6 ) and four reaction types (electron impact ionization/dissociative ionization, electron impact dissociation, proton impact charge exchange, and dissociative recombination). Experimental reaction rates or cross sections have been compiled, and estimates have been made for cases where these are not available. The proton impact charge exchange reaction rates are calculated from a theoretical model using molecular polarizabilities. Dissociative recombination rates are described by the equation A/T B where parameter A is fit using polarizabilities and B is estimated from known reaction rates. The electron impact ionization and dissociation cross sections are fit to known graphs using four parameters: threshold energy, maximum value of the cross section, energy at the maximum, and a constant for the exponential decay as energy increases. The model has recently been used in an analysis of the Joint European Torus [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] MARK II carbon inner divertor using the WBC Monte Carlo impurity transport code. The updated version of WBC, which includes the full set of hydrocarbon reactions, helps to explain an observed asymmetry in carbon deposition near the divertor.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>CROSS SECTIONS</subject><subject>DISSOCIATION</subject><subject>ELECTRON-MOLECULE COLLISIONS</subject><subject>EXPERIMENTAL DATA</subject><subject>HYDROCARBONS</subject><subject>IONIZATION</subject><subject>JET TOKAMAK</subject><subject>PLASMA CONFINEMENT</subject><subject>PLASMA DENSITY</subject><subject>RECOMBINATION</subject><subject>THEORETICAL DATA</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAQB_AgCq6r4CMEvOiha9KkSXpclvWLBS8reAtpkrqVtglJquzb292KD-BhmDn8ZmD-AFxjtMCIkXu8EJyUDJ2AGUaizDjj9PQwc5QxRt_PwUWMnwghygoxA34Jd3sTnFahcj0MVunUjEPnjG1h7QJs3TdMtvM2qDQEO_EP20PfqtipCFVvxoLK-7bR6ridHEw7C19c0ye4HoLzdhRbF4Z4Cc5q1UZ79dvn4O1hvV09ZZvXx-fVcpNpInjKSmpQocoiNxQXFGtWcsNzWuSkMqUxilcYYyvG7wQVPGdGCWMrUlJdGc2LmszBzXTXxdTIqJtk9U67vrc6yRzlmCGCR3U7KR1cjMHW0oemU2EvMZKHPCWWU54jvZvo4dbxzX_ZLxf-nPSmJj-BioRf</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Alman, D. A.</creator><creator>Ruzic, D. N.</creator><creator>Brooks, J. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20000501</creationdate><title>A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus</title><author>Alman, D. A. ; Ruzic, D. N. ; Brooks, J. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>CROSS SECTIONS</topic><topic>DISSOCIATION</topic><topic>ELECTRON-MOLECULE COLLISIONS</topic><topic>EXPERIMENTAL DATA</topic><topic>HYDROCARBONS</topic><topic>IONIZATION</topic><topic>JET TOKAMAK</topic><topic>PLASMA CONFINEMENT</topic><topic>PLASMA DENSITY</topic><topic>RECOMBINATION</topic><topic>THEORETICAL DATA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alman, D. A.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Brooks, J. N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alman, D. A.</au><au>Ruzic, D. N.</au><au>Brooks, J. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus</atitle><jtitle>Physics of plasmas</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>7</volume><issue>5</issue><spage>1421</spage><epage>1432</epage><pages>1421-1432</pages><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>A model of collisional processes of hydrocarbons in hydrogen plasmas has been developed to aid in computer modeling efforts relevant to plasma–surface interactions. It includes 16 molecules (CH up to CH 4 , C 2 H to C 2 H 6 , and C 3 H to C 3 H 6 ) and four reaction types (electron impact ionization/dissociative ionization, electron impact dissociation, proton impact charge exchange, and dissociative recombination). Experimental reaction rates or cross sections have been compiled, and estimates have been made for cases where these are not available. The proton impact charge exchange reaction rates are calculated from a theoretical model using molecular polarizabilities. Dissociative recombination rates are described by the equation A/T B where parameter A is fit using polarizabilities and B is estimated from known reaction rates. The electron impact ionization and dissociation cross sections are fit to known graphs using four parameters: threshold energy, maximum value of the cross section, energy at the maximum, and a constant for the exponential decay as energy increases. The model has recently been used in an analysis of the Joint European Torus [P. H. Rebut, R. J. Bickerton, and B. E. Keen, Nucl. Fusion 25, 1011 (1985)] MARK II carbon inner divertor using the WBC Monte Carlo impurity transport code. The updated version of WBC, which includes the full set of hydrocarbon reactions, helps to explain an observed asymmetry in carbon deposition near the divertor.</abstract><cop>United States</cop><doi>10.1063/1.873960</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2000-05, Vol.7 (5), p.1421-1432
issn 1070-664X
1089-7674
language eng
recordid cdi_scitation_primary_10_1063_1_873960
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
CROSS SECTIONS
DISSOCIATION
ELECTRON-MOLECULE COLLISIONS
EXPERIMENTAL DATA
HYDROCARBONS
IONIZATION
JET TOKAMAK
PLASMA CONFINEMENT
PLASMA DENSITY
RECOMBINATION
THEORETICAL DATA
title A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T14%3A16%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hydrocarbon%20reaction%20model%20for%20low%20temperature%20hydrogen%20plasmas%20and%20an%20application%20to%20the%20Joint%20European%20Torus&rft.jtitle=Physics%20of%20plasmas&rft.au=Alman,%20D.%20A.&rft.date=2000-05-01&rft.volume=7&rft.issue=5&rft.spage=1421&rft.epage=1432&rft.pages=1421-1432&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.873960&rft_dat=%3Cscitation_cross%3Epop%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c387t-94d05a952d41541c697d724523bd9dda7b111e8767848726da8deb394cbdc75f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true