Simulated annealing approach to vascular structure with application to the coronary arteries

Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globa...

Full description

Saved in:
Bibliographic Details
Published in:Royal Society open science 2016-02, Vol.3 (2), p.150431-150431
Main Authors: Keelan, Jonathan, Chung, Emma M. L., Hague, James P.
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
recordid cdi_royalsociety_journals_RSOSv3i2_0831074716_zip_rsos_3_issue_2_rsos_150431_rsos_150431
title Simulated annealing approach to vascular structure with application to the coronary arteries
format Article
creator Keelan, Jonathan
Chung, Emma M. L.
Hague, James P.
subjects Cardiovascular Systems
Optimization
Simulated Annealing
Structural Biology And Biophysics
Vascular Modelling
ispartof Royal Society open science, 2016-02, Vol.3 (2), p.150431-150431
description Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globally energetically optimal arterial trees. The method is based on simulated annealing, and can be used to examine arteries in hollow organs with arbitrary tissue geometries. We demonstrate that the approach can generate in silico vasculatures which closely match porcine anatomical data for the coronary arteries on all length scales, and that the optimized arterial trees improve systematically as computational time increases. The method presented here is general, and could in principle be used to examine the arteries of other organs. Potential applications include improvement of medical imaging analysis and the design of vascular trees for artificial organs.
language eng
source Royal Society Package S; NCBI_PubMed Central(免费); Scholars Portal Open Access Journals
identifier ISSN: 2054-5703
fulltext fulltext
issn 2054-5703
2054-5703
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-05-28T01%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20annealing%20approach%20to%20vascular%20structure%20with%20application%20to%20the%20coronary%20arteries&rft.jtitle=Royal%20Society%20open%20science&rft.au=Keelan,%20Jonathan&rft.date=2016-02-01&rft.volume=3&rft.issue=2&rft.spage=150431&rft.epage=150431&rft.pages=150431-150431&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.150431&rft_dat=%3Cproquest_royal%3E1775166974%3C/proquest_royal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-d79936fe561d5fea6be57a42780bc171db02c2f0f0e032b05d9ead7fcb9a38123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1775166974&rft_id=info:pmid/26998317
container_title Royal Society open science
container_volume 3
container_issue 2
container_start_page 150431
container_end_page 150431
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_royalsociety_journals_RSOSv3i2_0831074716_zip_rsos_3_issue_2_rsos_150431_rsos_150431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d284275f7ab44cb3ad2dd58ec72968e7</doaj_id><sourcerecordid>1775166974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-d79936fe561d5fea6be57a42780bc171db02c2f0f0e032b05d9ead7fcb9a38123</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoMottReeS9zKcjWfEwmMzeCFLWFQsHVK4VwJjmzm2V2MiaZlfXXm-3UshXxKl8Pz_uSQ8hLRi8Ybeq3Ifp4wSQtBXtCTjmV5UIqKp4e7U_IeYwbSmnGhKrUc3LCq6apBVOn5PvSbaceEtoChgGhd8OqgHEMHsy6SL7YQTQZCEVMYTJpClj8dGl9YHpnIDk_HLC0xsL44AcI-wJCwuAwviDPOugjnt-vZ-Trxw9fLq8WN7efri_f3yyMVDwtrGoaUXUoK2Zlh1C1KBWUXNW0NUwx21JueEc7ilTwlkrbIFjVmbYBUTMuzsj17LUeNnoMbptbaA9O3134sNK5kjM9asvrLJadgrYsTSvAcmtljUbxpqpRZde72TVO7RatwSEF6B9JH78Mbq1XfqdLVcusyILX94Lgf0wYk966aLDvYUA_Rc2UkqyqGlVm9M2MmuBjDNg9xDCqD-PVh_HqebyZfnXc7IH9M8wMfJuB4Pf5u71xmPZ646cw5KP-vLxd7oTjmmaaqlKxSv9y45whtItxQs2PI_-Kp_-z_6vxb3C-1Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><isCDI>true</isCDI><recordtype>article</recordtype><pqid>1775166974</pqid></control><display><type>article</type><title>Simulated annealing approach to vascular structure with application to the coronary arteries</title><source>Royal Society Package S</source><source>NCBI_PubMed Central(免费)</source><source>Scholars Portal Open Access Journals</source><creator>Keelan, Jonathan ; Chung, Emma M. L. ; Hague, James P.</creator><creatorcontrib>Keelan, Jonathan ; Chung, Emma M. L. ; Hague, James P.</creatorcontrib><description>Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globally energetically optimal arterial trees. The method is based on simulated annealing, and can be used to examine arteries in hollow organs with arbitrary tissue geometries. We demonstrate that the approach can generate in silico vasculatures which closely match porcine anatomical data for the coronary arteries on all length scales, and that the optimized arterial trees improve systematically as computational time increases. The method presented here is general, and could in principle be used to examine the arteries of other organs. Potential applications include improvement of medical imaging analysis and the design of vascular trees for artificial organs.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.150431</identifier><identifier>PMID: 26998317</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cardiovascular Systems ; Optimization ; Simulated Annealing ; Structural Biology And Biophysics ; Vascular Modelling</subject><ispartof>Royal Society open science, 2016-02, Vol.3 (2), p.150431-150431</ispartof><rights>2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-d79936fe561d5fea6be57a42780bc171db02c2f0f0e032b05d9ead7fcb9a38123</citedby><cites>FETCH-LOGICAL-c572t-d79936fe561d5fea6be57a42780bc171db02c2f0f0e032b05d9ead7fcb9a38123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,734,787,791,892,2237,3344,24362,27196,27985,27986,54176,54178,56258,56268</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26998317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keelan, Jonathan</creatorcontrib><creatorcontrib>Chung, Emma M. L.</creatorcontrib><creatorcontrib>Hague, James P.</creatorcontrib><title>Simulated annealing approach to vascular structure with application to the coronary arteries</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globally energetically optimal arterial trees. The method is based on simulated annealing, and can be used to examine arteries in hollow organs with arbitrary tissue geometries. We demonstrate that the approach can generate in silico vasculatures which closely match porcine anatomical data for the coronary arteries on all length scales, and that the optimized arterial trees improve systematically as computational time increases. The method presented here is general, and could in principle be used to examine the arteries of other organs. Potential applications include improvement of medical imaging analysis and the design of vascular trees for artificial organs.</description><subject>Cardiovascular Systems</subject><subject>Optimization</subject><subject>Simulated Annealing</subject><subject>Structural Biology And Biophysics</subject><subject>Vascular Modelling</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kV1rFDEUhoMottReeS9zKcjWfEwmMzeCFLWFQsHVK4VwJjmzm2V2MiaZlfXXm-3UshXxKl8Pz_uSQ8hLRi8Ybeq3Ifp4wSQtBXtCTjmV5UIqKp4e7U_IeYwbSmnGhKrUc3LCq6apBVOn5PvSbaceEtoChgGhd8OqgHEMHsy6SL7YQTQZCEVMYTJpClj8dGl9YHpnIDk_HLC0xsL44AcI-wJCwuAwviDPOugjnt-vZ-Trxw9fLq8WN7efri_f3yyMVDwtrGoaUXUoK2Zlh1C1KBWUXNW0NUwx21JueEc7ilTwlkrbIFjVmbYBUTMuzsj17LUeNnoMbptbaA9O3134sNK5kjM9asvrLJadgrYsTSvAcmtljUbxpqpRZde72TVO7RatwSEF6B9JH78Mbq1XfqdLVcusyILX94Lgf0wYk966aLDvYUA_Rc2UkqyqGlVm9M2MmuBjDNg9xDCqD-PVh_HqebyZfnXc7IH9M8wMfJuB4Pf5u71xmPZ646cw5KP-vLxd7oTjmmaaqlKxSv9y45whtItxQs2PI_-Kp_-z_6vxb3C-1Ag</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Keelan, Jonathan</creator><creator>Chung, Emma M. L.</creator><creator>Hague, James P.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20160201</creationdate><title>Simulated annealing approach to vascular structure with application to the coronary arteries</title><author>Keelan, Jonathan ; Chung, Emma M. L. ; Hague, James P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-d79936fe561d5fea6be57a42780bc171db02c2f0f0e032b05d9ead7fcb9a38123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cardiovascular Systems</topic><topic>Optimization</topic><topic>Simulated Annealing</topic><topic>Structural Biology And Biophysics</topic><topic>Vascular Modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keelan, Jonathan</creatorcontrib><creatorcontrib>Chung, Emma M. L.</creatorcontrib><creatorcontrib>Hague, James P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keelan, Jonathan</au><au>Chung, Emma M. L.</au><au>Hague, James P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated annealing approach to vascular structure with application to the coronary arteries</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>3</volume><issue>2</issue><spage>150431</spage><epage>150431</epage><pages>150431-150431</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Do the complex processes of angiogenesis during organism development ultimately lead to a near optimal coronary vasculature in the organs of adult mammals? We examine this hypothesis using a powerful and universal method, built on physical and physiological principles, for the determination of globally energetically optimal arterial trees. The method is based on simulated annealing, and can be used to examine arteries in hollow organs with arbitrary tissue geometries. We demonstrate that the approach can generate in silico vasculatures which closely match porcine anatomical data for the coronary arteries on all length scales, and that the optimized arterial trees improve systematically as computational time increases. The method presented here is general, and could in principle be used to examine the arteries of other organs. Potential applications include improvement of medical imaging analysis and the design of vascular trees for artificial organs.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>26998317</pmid><doi>10.1098/rsos.150431</doi><oa>free_for_read</oa></addata></record>