Loading…

A NPAS4-NuA4 complex couples synaptic activity to DNA repair

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons . Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damagi...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2023-02, Vol.614 (7949), p.732-741
Main Authors: Pollina, Elizabeth A, Gilliam, Daniel T, Landau, Andrew T, Lin, Cindy, Pajarillo, Naomi, Davis, Christopher P, Harmin, David A, Yap, Ee-Lynn, Vogel, Ian R, Griffith, Eric C, Nagy, M Aurel, Ling, Emi, Duffy, Erin E, Sabatini, Bernardo L, Weitz, Charles J, Greenberg, Michael E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3
cites cdi_FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3
container_end_page 741
container_issue 7949
container_start_page 732
container_title Nature (London)
container_volume 614
creator Pollina, Elizabeth A
Gilliam, Daniel T
Landau, Andrew T
Lin, Cindy
Pajarillo, Naomi
Davis, Christopher P
Harmin, David A
Yap, Ee-Lynn
Vogel, Ian R
Griffith, Eric C
Nagy, M Aurel
Ling, Emi
Duffy, Erin E
Sabatini, Bernardo L
Weitz, Charles J
Greenberg, Michael E
description Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons . Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.
doi_str_mv 10.1038/s41586-023-05711-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9946837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2777405315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMotlZfwIUMuHETzW2SCYgw1CuUKqjrkMmkOmVuJjPFvr2prUVd_Yt8-TnnfAAcY3SOEU0uPMNxwiEiFKJYYAzFDhhiJjhkPBG7YIgQSSBKKB-AA-_nCKEYC7YPBpQLSRKKhuAyjaZP6TOD0z5lkWmqtrSfIfuQPvLLWrddYSJtumJRdMuoa6LraRo52-rCHYK9mS69PdrkCLze3ryM7-Hk8e5hnE6gYRR1UDJLc8G0NjEnnOQiywijOY-pmNEcW5xwKSUnknOe5YRQm1htY0yYwchqQ0fgat3b9lllc2PrzulSta6otFuqRhfq70tdvKu3ZqGkDJegIhScbQpc89Fb36mq8MaWpa5t03tFhBAMxRTHAT39h86b3tVhvRUVCoUUNFBkTRnXeO_sbDsMRmolR63lqCBHfctRqylOfq-x_fJjg34BWTOIfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779947973</pqid></control><display><type>article</type><title>A NPAS4-NuA4 complex couples synaptic activity to DNA repair</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Pollina, Elizabeth A ; Gilliam, Daniel T ; Landau, Andrew T ; Lin, Cindy ; Pajarillo, Naomi ; Davis, Christopher P ; Harmin, David A ; Yap, Ee-Lynn ; Vogel, Ian R ; Griffith, Eric C ; Nagy, M Aurel ; Ling, Emi ; Duffy, Erin E ; Sabatini, Bernardo L ; Weitz, Charles J ; Greenberg, Michael E</creator><creatorcontrib>Pollina, Elizabeth A ; Gilliam, Daniel T ; Landau, Andrew T ; Lin, Cindy ; Pajarillo, Naomi ; Davis, Christopher P ; Harmin, David A ; Yap, Ee-Lynn ; Vogel, Ian R ; Griffith, Eric C ; Nagy, M Aurel ; Ling, Emi ; Duffy, Erin E ; Sabatini, Bernardo L ; Weitz, Charles J ; Greenberg, Michael E</creatorcontrib><description>Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons . Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-05711-7</identifier><identifier>PMID: 36792830</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Aging - genetics ; Autism ; Basic Helix-Loop-Helix Transcription Factors ; Binding sites ; Brain ; Brain - metabolism ; Brain damage ; Chromatin ; Circuits ; Couples ; Deoxyribonucleic acid ; Disorders ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; Gene Expression Regulation ; Genome ; Genomes ; Genomic instability ; Life span ; Longevity - genetics ; Lysine Acetyltransferase 5 - metabolism ; Mass spectrometry ; Multiprotein Complexes - metabolism ; Mutation ; Neurodegeneration ; Neurodegenerative Diseases ; Neurodevelopmental disorders ; Neurons ; Neurons - metabolism ; Proteins ; Regulatory sequences ; Repair ; Repair &amp; maintenance ; Scientific imaging ; Synapses - metabolism ; Transcription factors ; Transcriptomes</subject><ispartof>Nature (London), 2023-02, Vol.614 (7949), p.732-741</ispartof><rights>2023. The Author(s).</rights><rights>Copyright Nature Publishing Group Feb 23, 2023</rights><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3</citedby><cites>FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3</cites><orcidid>0000-0003-1380-2160 ; 0000-0001-5287-0284 ; 0000-0003-0428-3215 ; 0000-0003-0095-9177 ; 0000-0002-7519-5098</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36792830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pollina, Elizabeth A</creatorcontrib><creatorcontrib>Gilliam, Daniel T</creatorcontrib><creatorcontrib>Landau, Andrew T</creatorcontrib><creatorcontrib>Lin, Cindy</creatorcontrib><creatorcontrib>Pajarillo, Naomi</creatorcontrib><creatorcontrib>Davis, Christopher P</creatorcontrib><creatorcontrib>Harmin, David A</creatorcontrib><creatorcontrib>Yap, Ee-Lynn</creatorcontrib><creatorcontrib>Vogel, Ian R</creatorcontrib><creatorcontrib>Griffith, Eric C</creatorcontrib><creatorcontrib>Nagy, M Aurel</creatorcontrib><creatorcontrib>Ling, Emi</creatorcontrib><creatorcontrib>Duffy, Erin E</creatorcontrib><creatorcontrib>Sabatini, Bernardo L</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><creatorcontrib>Greenberg, Michael E</creatorcontrib><title>A NPAS4-NuA4 complex couples synaptic activity to DNA repair</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons . Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.</description><subject>Aging - genetics</subject><subject>Autism</subject><subject>Basic Helix-Loop-Helix Transcription Factors</subject><subject>Binding sites</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain damage</subject><subject>Chromatin</subject><subject>Circuits</subject><subject>Couples</subject><subject>Deoxyribonucleic acid</subject><subject>Disorders</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>Gene Expression Regulation</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Life span</subject><subject>Longevity - genetics</subject><subject>Lysine Acetyltransferase 5 - metabolism</subject><subject>Mass spectrometry</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutation</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative Diseases</subject><subject>Neurodevelopmental disorders</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Proteins</subject><subject>Regulatory sequences</subject><subject>Repair</subject><subject>Repair &amp; maintenance</subject><subject>Scientific imaging</subject><subject>Synapses - metabolism</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctKAzEUhoMotlZfwIUMuHETzW2SCYgw1CuUKqjrkMmkOmVuJjPFvr2prUVd_Yt8-TnnfAAcY3SOEU0uPMNxwiEiFKJYYAzFDhhiJjhkPBG7YIgQSSBKKB-AA-_nCKEYC7YPBpQLSRKKhuAyjaZP6TOD0z5lkWmqtrSfIfuQPvLLWrddYSJtumJRdMuoa6LraRo52-rCHYK9mS69PdrkCLze3ryM7-Hk8e5hnE6gYRR1UDJLc8G0NjEnnOQiywijOY-pmNEcW5xwKSUnknOe5YRQm1htY0yYwchqQ0fgat3b9lllc2PrzulSta6otFuqRhfq70tdvKu3ZqGkDJegIhScbQpc89Fb36mq8MaWpa5t03tFhBAMxRTHAT39h86b3tVhvRUVCoUUNFBkTRnXeO_sbDsMRmolR63lqCBHfctRqylOfq-x_fJjg34BWTOIfw</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Pollina, Elizabeth A</creator><creator>Gilliam, Daniel T</creator><creator>Landau, Andrew T</creator><creator>Lin, Cindy</creator><creator>Pajarillo, Naomi</creator><creator>Davis, Christopher P</creator><creator>Harmin, David A</creator><creator>Yap, Ee-Lynn</creator><creator>Vogel, Ian R</creator><creator>Griffith, Eric C</creator><creator>Nagy, M Aurel</creator><creator>Ling, Emi</creator><creator>Duffy, Erin E</creator><creator>Sabatini, Bernardo L</creator><creator>Weitz, Charles J</creator><creator>Greenberg, Michael E</creator><general>Nature Publishing Group</general><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1380-2160</orcidid><orcidid>https://orcid.org/0000-0001-5287-0284</orcidid><orcidid>https://orcid.org/0000-0003-0428-3215</orcidid><orcidid>https://orcid.org/0000-0003-0095-9177</orcidid><orcidid>https://orcid.org/0000-0002-7519-5098</orcidid></search><sort><creationdate>20230223</creationdate><title>A NPAS4-NuA4 complex couples synaptic activity to DNA repair</title><author>Pollina, Elizabeth A ; Gilliam, Daniel T ; Landau, Andrew T ; Lin, Cindy ; Pajarillo, Naomi ; Davis, Christopher P ; Harmin, David A ; Yap, Ee-Lynn ; Vogel, Ian R ; Griffith, Eric C ; Nagy, M Aurel ; Ling, Emi ; Duffy, Erin E ; Sabatini, Bernardo L ; Weitz, Charles J ; Greenberg, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aging - genetics</topic><topic>Autism</topic><topic>Basic Helix-Loop-Helix Transcription Factors</topic><topic>Binding sites</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain damage</topic><topic>Chromatin</topic><topic>Circuits</topic><topic>Couples</topic><topic>Deoxyribonucleic acid</topic><topic>Disorders</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>Gene Expression Regulation</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Life span</topic><topic>Longevity - genetics</topic><topic>Lysine Acetyltransferase 5 - metabolism</topic><topic>Mass spectrometry</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutation</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative Diseases</topic><topic>Neurodevelopmental disorders</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Proteins</topic><topic>Regulatory sequences</topic><topic>Repair</topic><topic>Repair &amp; maintenance</topic><topic>Scientific imaging</topic><topic>Synapses - metabolism</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pollina, Elizabeth A</creatorcontrib><creatorcontrib>Gilliam, Daniel T</creatorcontrib><creatorcontrib>Landau, Andrew T</creatorcontrib><creatorcontrib>Lin, Cindy</creatorcontrib><creatorcontrib>Pajarillo, Naomi</creatorcontrib><creatorcontrib>Davis, Christopher P</creatorcontrib><creatorcontrib>Harmin, David A</creatorcontrib><creatorcontrib>Yap, Ee-Lynn</creatorcontrib><creatorcontrib>Vogel, Ian R</creatorcontrib><creatorcontrib>Griffith, Eric C</creatorcontrib><creatorcontrib>Nagy, M Aurel</creatorcontrib><creatorcontrib>Ling, Emi</creatorcontrib><creatorcontrib>Duffy, Erin E</creatorcontrib><creatorcontrib>Sabatini, Bernardo L</creatorcontrib><creatorcontrib>Weitz, Charles J</creatorcontrib><creatorcontrib>Greenberg, Michael E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Journals (ProQuest)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pollina, Elizabeth A</au><au>Gilliam, Daniel T</au><au>Landau, Andrew T</au><au>Lin, Cindy</au><au>Pajarillo, Naomi</au><au>Davis, Christopher P</au><au>Harmin, David A</au><au>Yap, Ee-Lynn</au><au>Vogel, Ian R</au><au>Griffith, Eric C</au><au>Nagy, M Aurel</au><au>Ling, Emi</au><au>Duffy, Erin E</au><au>Sabatini, Bernardo L</au><au>Weitz, Charles J</au><au>Greenberg, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NPAS4-NuA4 complex couples synaptic activity to DNA repair</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>614</volume><issue>7949</issue><spage>732</spage><epage>741</epage><pages>732-741</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons . Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>36792830</pmid><doi>10.1038/s41586-023-05711-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1380-2160</orcidid><orcidid>https://orcid.org/0000-0001-5287-0284</orcidid><orcidid>https://orcid.org/0000-0003-0428-3215</orcidid><orcidid>https://orcid.org/0000-0003-0095-9177</orcidid><orcidid>https://orcid.org/0000-0002-7519-5098</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-02, Vol.614 (7949), p.732-741
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9946837
source Springer Nature - Connect here FIRST to enable access
subjects Aging - genetics
Autism
Basic Helix-Loop-Helix Transcription Factors
Binding sites
Brain
Brain - metabolism
Brain damage
Chromatin
Circuits
Couples
Deoxyribonucleic acid
Disorders
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
Gene Expression Regulation
Genome
Genomes
Genomic instability
Life span
Longevity - genetics
Lysine Acetyltransferase 5 - metabolism
Mass spectrometry
Multiprotein Complexes - metabolism
Mutation
Neurodegeneration
Neurodegenerative Diseases
Neurodevelopmental disorders
Neurons
Neurons - metabolism
Proteins
Regulatory sequences
Repair
Repair & maintenance
Scientific imaging
Synapses - metabolism
Transcription factors
Transcriptomes
title A NPAS4-NuA4 complex couples synaptic activity to DNA repair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T02%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NPAS4-NuA4%20complex%20couples%20synaptic%20activity%20to%20DNA%20repair&rft.jtitle=Nature%20(London)&rft.au=Pollina,%20Elizabeth%20A&rft.date=2023-02-23&rft.volume=614&rft.issue=7949&rft.spage=732&rft.epage=741&rft.pages=732-741&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-05711-7&rft_dat=%3Cproquest_pubme%3E2777405315%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-94e3d74aac56262d7bb243d6537f3d1e186999629666bd223e8eae5124c10eac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779947973&rft_id=info:pmid/36792830&rfr_iscdi=true