Loading…

Extending MIEZE spectroscopy towards thermal wavelengths

A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advanta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied crystallography 2022-12, Vol.55 (6), p.1424-1431
Main Authors: Jochum, Johanna K., Franz, Christian, Keller, Thomas, Pfleiderer, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4297-c89378e4854a625c985f00206678aae332a282e758c7cd6427fab0538881d933
container_end_page 1431
container_issue 6
container_start_page 1424
container_title Journal of applied crystallography
container_volume 55
creator Jochum, Johanna K.
Franz, Christian
Keller, Thomas
Pfleiderer, Christian
description A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin‐depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin‐incoherent scattering. The second advantage is that multi‐analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin‐echo approximation towards shorter spin‐echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin‐echo spectroscopy and conventional high‐resolution neutron spectroscopy techniques such as triple‐axis, time‐of‐flight and back‐scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer. A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons.
doi_str_mv 10.1107/S1600576722009505
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758353123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4297-c89378e4854a625c985f00206678aae332a282e758c7cd6427fab0538881d933</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0EoqXwAWxQJDZsAn7Ej2yQUBWgqAgJumJjuY7TpsoLO2np35OopSqwYDWj8Zk7M74AnCN4jRDkN2-IQUg54xhDGFJID0C_K_ld7XAv74ET5xYQog49Bj3CKIeMBn0gos_aFHFazLznUfQeea4yural02W19upypWzsvHpubK4yb6WWJjPFrJ67U3CUqMyZs20cgMl9NBk--uOXh9HwbuzrAIfc1yIkXJhA0EAxTHUoaAIhhoxxoZQhBCsssOFUaK5jFmCeqCmkRAiB4pCQAbjdyFbNNDexNkVtVSYrm-bKrmWpUvnzpUjnclYuZcgxIpi3AldbAVt-NMbVMk-dNlmmClM2TuJ2NKEE4W7W5S90UTa2aK9rqYAhxHGIWgptKN3-krMm2S2DoOxskX9saXsu9q_YdXz70ALhBlilmVn_ryifhq84GlEoOPkCZG2Wlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746117291</pqid></control><display><type>article</type><title>Extending MIEZE spectroscopy towards thermal wavelengths</title><source>Wiley</source><creator>Jochum, Johanna K. ; Franz, Christian ; Keller, Thomas ; Pfleiderer, Christian</creator><creatorcontrib>Jochum, Johanna K. ; Franz, Christian ; Keller, Thomas ; Pfleiderer, Christian</creatorcontrib><description>A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin‐depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin‐incoherent scattering. The second advantage is that multi‐analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin‐echo approximation towards shorter spin‐echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin‐echo spectroscopy and conventional high‐resolution neutron spectroscopy techniques such as triple‐axis, time‐of‐flight and back‐scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer. A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576722009505</identifier><identifier>PMID: 36570654</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Cold neutrons ; Depolarization ; Energy resolution ; Ferromagnetism ; Incoherent scattering ; Magnetic fields ; MIEZE ; neutron resonant spin echo ; Neutrons ; Polarizers ; quasielastic scattering ; Research Papers ; Spectroscopy ; Spectrum analysis ; Thermal neutrons ; Wavelengths</subject><ispartof>Journal of applied crystallography, 2022-12, Vol.55 (6), p.1424-1431</ispartof><rights>2022 Johanna K. Jochum et al. published by IUCr Journals.</rights><rights>Johanna K. Jochum et al. 2022.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Johanna K. Jochum et al. 2022 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4297-c89378e4854a625c985f00206678aae332a282e758c7cd6427fab0538881d933</cites><orcidid>0000-0002-0066-0944 ; 0000-0001-5600-4914 ; 0000-0001-7749-7965 ; 0000-0001-6820-2774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576722009505$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576722009505$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36570654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jochum, Johanna K.</creatorcontrib><creatorcontrib>Franz, Christian</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Pfleiderer, Christian</creatorcontrib><title>Extending MIEZE spectroscopy towards thermal wavelengths</title><title>Journal of applied crystallography</title><addtitle>J Appl Crystallogr</addtitle><description>A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin‐depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin‐incoherent scattering. The second advantage is that multi‐analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin‐echo approximation towards shorter spin‐echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin‐echo spectroscopy and conventional high‐resolution neutron spectroscopy techniques such as triple‐axis, time‐of‐flight and back‐scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer. A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons.</description><subject>Cold neutrons</subject><subject>Depolarization</subject><subject>Energy resolution</subject><subject>Ferromagnetism</subject><subject>Incoherent scattering</subject><subject>Magnetic fields</subject><subject>MIEZE</subject><subject>neutron resonant spin echo</subject><subject>Neutrons</subject><subject>Polarizers</subject><subject>quasielastic scattering</subject><subject>Research Papers</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermal neutrons</subject><subject>Wavelengths</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOwzAQRS0EoqXwAWxQJDZsAn7Ej2yQUBWgqAgJumJjuY7TpsoLO2np35OopSqwYDWj8Zk7M74AnCN4jRDkN2-IQUg54xhDGFJID0C_K_ld7XAv74ET5xYQog49Bj3CKIeMBn0gos_aFHFazLznUfQeea4yural02W19upypWzsvHpubK4yb6WWJjPFrJ67U3CUqMyZs20cgMl9NBk--uOXh9HwbuzrAIfc1yIkXJhA0EAxTHUoaAIhhoxxoZQhBCsssOFUaK5jFmCeqCmkRAiB4pCQAbjdyFbNNDexNkVtVSYrm-bKrmWpUvnzpUjnclYuZcgxIpi3AldbAVt-NMbVMk-dNlmmClM2TuJ2NKEE4W7W5S90UTa2aK9rqYAhxHGIWgptKN3-krMm2S2DoOxskX9saXsu9q_YdXz70ALhBlilmVn_ryifhq84GlEoOPkCZG2Wlg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Jochum, Johanna K.</creator><creator>Franz, Christian</creator><creator>Keller, Thomas</creator><creator>Pfleiderer, Christian</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0066-0944</orcidid><orcidid>https://orcid.org/0000-0001-5600-4914</orcidid><orcidid>https://orcid.org/0000-0001-7749-7965</orcidid><orcidid>https://orcid.org/0000-0001-6820-2774</orcidid></search><sort><creationdate>202212</creationdate><title>Extending MIEZE spectroscopy towards thermal wavelengths</title><author>Jochum, Johanna K. ; Franz, Christian ; Keller, Thomas ; Pfleiderer, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4297-c89378e4854a625c985f00206678aae332a282e758c7cd6427fab0538881d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cold neutrons</topic><topic>Depolarization</topic><topic>Energy resolution</topic><topic>Ferromagnetism</topic><topic>Incoherent scattering</topic><topic>Magnetic fields</topic><topic>MIEZE</topic><topic>neutron resonant spin echo</topic><topic>Neutrons</topic><topic>Polarizers</topic><topic>quasielastic scattering</topic><topic>Research Papers</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermal neutrons</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jochum, Johanna K.</creatorcontrib><creatorcontrib>Franz, Christian</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Pfleiderer, Christian</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jochum, Johanna K.</au><au>Franz, Christian</au><au>Keller, Thomas</au><au>Pfleiderer, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending MIEZE spectroscopy towards thermal wavelengths</atitle><jtitle>Journal of applied crystallography</jtitle><addtitle>J Appl Crystallogr</addtitle><date>2022-12</date><risdate>2022</risdate><volume>55</volume><issue>6</issue><spage>1424</spage><epage>1431</epage><pages>1424-1431</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons. MIEZE has two prominent advantages compared with classical neutron spin echo. The first is the possibility to investigate spin‐depolarizing samples or samples in strong magnetic fields without loss of signal amplitude and intensity. This allows for the study of spin fluctuations in ferromagnets, and facilitates the study of samples with strong spin‐incoherent scattering. The second advantage is that multi‐analyzer setups can be implemented with comparatively little effort. The use of thermal neutrons increases the range of validity of the spin‐echo approximation towards shorter spin‐echo times. In turn, the thermal MIEZE option for greater ranges (TIGER) closes the gap between classical neutron spin‐echo spectroscopy and conventional high‐resolution neutron spectroscopy techniques such as triple‐axis, time‐of‐flight and back‐scattering. To illustrate the feasibility of TIGER, this paper presents the details of its implementation at the RESEDA beamline at FRM II by means of an additional velocity selector, polarizer and analyzer. A modulation of intensity with zero effort (MIEZE) setup is proposed for high‐resolution neutron spectroscopy at momentum transfers up to 3 Å−1, energy transfers up to 20 meV and an energy resolution in the microelectronvolt range using both thermal and cold neutrons.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>36570654</pmid><doi>10.1107/S1600576722009505</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0066-0944</orcidid><orcidid>https://orcid.org/0000-0001-5600-4914</orcidid><orcidid>https://orcid.org/0000-0001-7749-7965</orcidid><orcidid>https://orcid.org/0000-0001-6820-2774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2022-12, Vol.55 (6), p.1424-1431
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9721327
source Wiley
subjects Cold neutrons
Depolarization
Energy resolution
Ferromagnetism
Incoherent scattering
Magnetic fields
MIEZE
neutron resonant spin echo
Neutrons
Polarizers
quasielastic scattering
Research Papers
Spectroscopy
Spectrum analysis
Thermal neutrons
Wavelengths
title Extending MIEZE spectroscopy towards thermal wavelengths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T06%3A36%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20MIEZE%20spectroscopy%20towards%20thermal%20wavelengths&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Jochum,%20Johanna%20K.&rft.date=2022-12&rft.volume=55&rft.issue=6&rft.spage=1424&rft.epage=1431&rft.pages=1424-1431&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576722009505&rft_dat=%3Cproquest_pubme%3E2758353123%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4297-c89378e4854a625c985f00206678aae332a282e758c7cd6427fab0538881d933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2746117291&rft_id=info:pmid/36570654&rfr_iscdi=true