Loading…

The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue

Summary Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment....

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2022-04, Vol.234 (2), p.592-606
Main Authors: Ortiz, Diana, Chen, Jian, Outram, Megan A., Saur, Isabel M.L., Upadhyaya, Narayana M., Mago, Rohit, Ericsson, Daniel J., Cesari, Stella, Chen, Chunhong, Williams, Simon J., Dodds, Peter N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973
cites cdi_FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973
container_end_page 606
container_issue 2
container_start_page 592
container_title The New phytologist
container_volume 234
creator Ortiz, Diana
Chen, Jian
Outram, Megan A.
Saur, Isabel M.L.
Upadhyaya, Narayana M.
Mago, Rohit
Ericsson, Daniel J.
Cesari, Stella
Chen, Chunhong
Williams, Simon J.
Dodds, Peter N.
description Summary Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site‐directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino‐acid variation involving a single substitution of the AvrSr50 surface‐exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate‐binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.
doi_str_mv 10.1111/nph.18011
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9306850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624952453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973</originalsourceid><addsrcrecordid>eNp1kc9uEzEQxi1ERdPAgRdAlrjQw7b-s-vdvSBFFRCkqK1EkbhZXu84cbVZL_Y6JTcegWfkSXCSUpVK-GBrxr_5xuMPodeUnNG0zvthdUYrQukzNKG5qLOK8vI5mhDCqkzk4tsxOgnhlhBSF4K9QMe8oKSseDVBdzcrwGGENfYxjBiMAT06jwfvRrA9nm38F18QDEGrAQLeBx60W_Z2tK7HzRYrHGITRjvGfSZVpYztl11Sjt4oDb9__oIfgwvQptpg2wgv0ZFRXYBX9-cUff344eZini2uPn2-mC0ynZclzYyoilKruswLzotc1W3OREWYaVhrgDZCs5YWDSsbbphS2oi2FqLknLZAoC75FL0_6A6xWUOroR-96uTg7Vr5rXTKyn9veruSS7eRNSepN0kCpweB1ZOy-WwhdznCBSWCVRua2Hf3zbz7HiGMcm2Dhq5TPbgYJBMsrwu2m2WK3j5Bb130ffqKROWEpe1xc-1dCB7MwwsokTvrZbJe7q1P7JvHkz6Qf71OwPkBuLMdbP-vJC-v5wfJPzM9ub8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2640226450</pqid></control><display><type>article</type><title>The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue</title><source>Wiley-Blackwell Journals</source><creator>Ortiz, Diana ; Chen, Jian ; Outram, Megan A. ; Saur, Isabel M.L. ; Upadhyaya, Narayana M. ; Mago, Rohit ; Ericsson, Daniel J. ; Cesari, Stella ; Chen, Chunhong ; Williams, Simon J. ; Dodds, Peter N.</creator><creatorcontrib>Ortiz, Diana ; Chen, Jian ; Outram, Megan A. ; Saur, Isabel M.L. ; Upadhyaya, Narayana M. ; Mago, Rohit ; Ericsson, Daniel J. ; Cesari, Stella ; Chen, Chunhong ; Williams, Simon J. ; Dodds, Peter N.</creatorcontrib><description>Summary Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site‐directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino‐acid variation involving a single substitution of the AvrSr50 surface‐exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate‐binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.18011</identifier><identifier>PMID: 35107838</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alleles ; AvrSr50 ; Basidiomycota - physiology ; Binding ; Breeding ; Carbohydrates ; Colonization ; Crystal structure ; Deoxyribonucleic acid ; Disease Resistance - genetics ; DNA ; effector evolution ; effector structure ; Evolution ; Genetic diversity ; Genetic variation ; Homology ; Insertion ; Life Sciences ; Molecular modelling ; Mutagenesis ; Pathogens ; Phytopathology and phytopharmacy ; Plant Breeding ; Plant Diseases - genetics ; Plant resistance ; Population genetics ; Populations ; Proteins ; Recognition ; Residues ; resistance breakdown ; Saccharides ; Site-directed mutagenesis ; Sr50 ; Stem rust ; Stems ; Stop codon ; Substitutes ; Triticum - genetics ; Vegetal Biology ; Virulence ; wheat resistance</subject><ispartof>The New phytologist, 2022-04, Vol.234 (2), p.592-606</ispartof><rights>2022 The Authors © 2022 New Phytologist Foundation</rights><rights>2022 The Authors New Phytologist © 2022 New Phytologist Foundation.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973</citedby><cites>FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973</cites><orcidid>0000-0002-5610-1260 ; 0000-0003-0620-5923 ; 0000-0001-8670-6984 ; 0000-0001-5101-9244 ; 0000-0001-7813-2415 ; 0000-0003-4510-3575 ; 0000-0003-4781-6261 ; 0000-0001-8558-0371 ; 0000-0001-6120-5788 ; 0000-0001-5286-073X ; 0000-0002-3052-0416 ; 0000-0002-3088-4738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.18011$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.18011$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35107838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03610628$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortiz, Diana</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Outram, Megan A.</creatorcontrib><creatorcontrib>Saur, Isabel M.L.</creatorcontrib><creatorcontrib>Upadhyaya, Narayana M.</creatorcontrib><creatorcontrib>Mago, Rohit</creatorcontrib><creatorcontrib>Ericsson, Daniel J.</creatorcontrib><creatorcontrib>Cesari, Stella</creatorcontrib><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Williams, Simon J.</creatorcontrib><creatorcontrib>Dodds, Peter N.</creatorcontrib><title>The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site‐directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino‐acid variation involving a single substitution of the AvrSr50 surface‐exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate‐binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.</description><subject>Alleles</subject><subject>AvrSr50</subject><subject>Basidiomycota - physiology</subject><subject>Binding</subject><subject>Breeding</subject><subject>Carbohydrates</subject><subject>Colonization</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Resistance - genetics</subject><subject>DNA</subject><subject>effector evolution</subject><subject>effector structure</subject><subject>Evolution</subject><subject>Genetic diversity</subject><subject>Genetic variation</subject><subject>Homology</subject><subject>Insertion</subject><subject>Life Sciences</subject><subject>Molecular modelling</subject><subject>Mutagenesis</subject><subject>Pathogens</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant Breeding</subject><subject>Plant Diseases - genetics</subject><subject>Plant resistance</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Residues</subject><subject>resistance breakdown</subject><subject>Saccharides</subject><subject>Site-directed mutagenesis</subject><subject>Sr50</subject><subject>Stem rust</subject><subject>Stems</subject><subject>Stop codon</subject><subject>Substitutes</subject><subject>Triticum - genetics</subject><subject>Vegetal Biology</subject><subject>Virulence</subject><subject>wheat resistance</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kc9uEzEQxi1ERdPAgRdAlrjQw7b-s-vdvSBFFRCkqK1EkbhZXu84cbVZL_Y6JTcegWfkSXCSUpVK-GBrxr_5xuMPodeUnNG0zvthdUYrQukzNKG5qLOK8vI5mhDCqkzk4tsxOgnhlhBSF4K9QMe8oKSseDVBdzcrwGGENfYxjBiMAT06jwfvRrA9nm38F18QDEGrAQLeBx60W_Z2tK7HzRYrHGITRjvGfSZVpYztl11Sjt4oDb9__oIfgwvQptpg2wgv0ZFRXYBX9-cUff344eZini2uPn2-mC0ynZclzYyoilKruswLzotc1W3OREWYaVhrgDZCs5YWDSsbbphS2oi2FqLknLZAoC75FL0_6A6xWUOroR-96uTg7Vr5rXTKyn9veruSS7eRNSepN0kCpweB1ZOy-WwhdznCBSWCVRua2Hf3zbz7HiGMcm2Dhq5TPbgYJBMsrwu2m2WK3j5Bb130ffqKROWEpe1xc-1dCB7MwwsokTvrZbJe7q1P7JvHkz6Qf71OwPkBuLMdbP-vJC-v5wfJPzM9ub8</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Ortiz, Diana</creator><creator>Chen, Jian</creator><creator>Outram, Megan A.</creator><creator>Saur, Isabel M.L.</creator><creator>Upadhyaya, Narayana M.</creator><creator>Mago, Rohit</creator><creator>Ericsson, Daniel J.</creator><creator>Cesari, Stella</creator><creator>Chen, Chunhong</creator><creator>Williams, Simon J.</creator><creator>Dodds, Peter N.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5610-1260</orcidid><orcidid>https://orcid.org/0000-0003-0620-5923</orcidid><orcidid>https://orcid.org/0000-0001-8670-6984</orcidid><orcidid>https://orcid.org/0000-0001-5101-9244</orcidid><orcidid>https://orcid.org/0000-0001-7813-2415</orcidid><orcidid>https://orcid.org/0000-0003-4510-3575</orcidid><orcidid>https://orcid.org/0000-0003-4781-6261</orcidid><orcidid>https://orcid.org/0000-0001-8558-0371</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-5286-073X</orcidid><orcidid>https://orcid.org/0000-0002-3052-0416</orcidid><orcidid>https://orcid.org/0000-0002-3088-4738</orcidid></search><sort><creationdate>202204</creationdate><title>The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue</title><author>Ortiz, Diana ; Chen, Jian ; Outram, Megan A. ; Saur, Isabel M.L. ; Upadhyaya, Narayana M. ; Mago, Rohit ; Ericsson, Daniel J. ; Cesari, Stella ; Chen, Chunhong ; Williams, Simon J. ; Dodds, Peter N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alleles</topic><topic>AvrSr50</topic><topic>Basidiomycota - physiology</topic><topic>Binding</topic><topic>Breeding</topic><topic>Carbohydrates</topic><topic>Colonization</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Resistance - genetics</topic><topic>DNA</topic><topic>effector evolution</topic><topic>effector structure</topic><topic>Evolution</topic><topic>Genetic diversity</topic><topic>Genetic variation</topic><topic>Homology</topic><topic>Insertion</topic><topic>Life Sciences</topic><topic>Molecular modelling</topic><topic>Mutagenesis</topic><topic>Pathogens</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant Breeding</topic><topic>Plant Diseases - genetics</topic><topic>Plant resistance</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Residues</topic><topic>resistance breakdown</topic><topic>Saccharides</topic><topic>Site-directed mutagenesis</topic><topic>Sr50</topic><topic>Stem rust</topic><topic>Stems</topic><topic>Stop codon</topic><topic>Substitutes</topic><topic>Triticum - genetics</topic><topic>Vegetal Biology</topic><topic>Virulence</topic><topic>wheat resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, Diana</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><creatorcontrib>Outram, Megan A.</creatorcontrib><creatorcontrib>Saur, Isabel M.L.</creatorcontrib><creatorcontrib>Upadhyaya, Narayana M.</creatorcontrib><creatorcontrib>Mago, Rohit</creatorcontrib><creatorcontrib>Ericsson, Daniel J.</creatorcontrib><creatorcontrib>Cesari, Stella</creatorcontrib><creatorcontrib>Chen, Chunhong</creatorcontrib><creatorcontrib>Williams, Simon J.</creatorcontrib><creatorcontrib>Dodds, Peter N.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, Diana</au><au>Chen, Jian</au><au>Outram, Megan A.</au><au>Saur, Isabel M.L.</au><au>Upadhyaya, Narayana M.</au><au>Mago, Rohit</au><au>Ericsson, Daniel J.</au><au>Cesari, Stella</au><au>Chen, Chunhong</au><au>Williams, Simon J.</au><au>Dodds, Peter N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2022-04</date><risdate>2022</risdate><volume>234</volume><issue>2</issue><spage>592</spage><epage>606</epage><pages>592-606</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><notes>These authors contributed equally to this work.</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Summary Pathogen effectors are crucial players during plant colonisation and infection. Plant resistance mostly relies on effector recognition to activate defence responses. Understanding how effector proteins escape from plant surveillance is important for plant breeding and resistance deployment. Here we examined the role of genetic diversity of the stem rust (Puccinia graminis f. sp. tritici (Pgt)) AvrSr50 gene in determining recognition by the corresponding wheat Sr50 resistance gene. We solved the crystal structure of a natural variant of AvrSr50 and used site‐directed mutagenesis and transient expression assays to dissect the molecular mechanisms explaining gain of virulence. We report that AvrSr50 can escape recognition by Sr50 through different mechanisms including DNA insertion, stop codon loss or by amino‐acid variation involving a single substitution of the AvrSr50 surface‐exposed residue Q121. We also report structural homology of AvrSr50 to cupin superfamily members and carbohydrate‐binding modules indicating a potential role in binding sugar moieties. This study identifies key polymorphic sites present in AvrSr50 alleles from natural stem rust populations that play important roles to escape from Sr50 recognition. This constitutes an important step to better understand Pgt effector evolution and to monitor AvrSr50 variants in natural rust populations.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35107838</pmid><doi>10.1111/nph.18011</doi><tpages>606</tpages><orcidid>https://orcid.org/0000-0002-5610-1260</orcidid><orcidid>https://orcid.org/0000-0003-0620-5923</orcidid><orcidid>https://orcid.org/0000-0001-8670-6984</orcidid><orcidid>https://orcid.org/0000-0001-5101-9244</orcidid><orcidid>https://orcid.org/0000-0001-7813-2415</orcidid><orcidid>https://orcid.org/0000-0003-4510-3575</orcidid><orcidid>https://orcid.org/0000-0003-4781-6261</orcidid><orcidid>https://orcid.org/0000-0001-8558-0371</orcidid><orcidid>https://orcid.org/0000-0001-6120-5788</orcidid><orcidid>https://orcid.org/0000-0001-5286-073X</orcidid><orcidid>https://orcid.org/0000-0002-3052-0416</orcidid><orcidid>https://orcid.org/0000-0002-3088-4738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2022-04, Vol.234 (2), p.592-606
issn 0028-646X
1469-8137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9306850
source Wiley-Blackwell Journals
subjects Alleles
AvrSr50
Basidiomycota - physiology
Binding
Breeding
Carbohydrates
Colonization
Crystal structure
Deoxyribonucleic acid
Disease Resistance - genetics
DNA
effector evolution
effector structure
Evolution
Genetic diversity
Genetic variation
Homology
Insertion
Life Sciences
Molecular modelling
Mutagenesis
Pathogens
Phytopathology and phytopharmacy
Plant Breeding
Plant Diseases - genetics
Plant resistance
Population genetics
Populations
Proteins
Recognition
Residues
resistance breakdown
Saccharides
Site-directed mutagenesis
Sr50
Stem rust
Stems
Stop codon
Substitutes
Triticum - genetics
Vegetal Biology
Virulence
wheat resistance
title The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surface‐exposed residue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T15%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stem%20rust%20effector%20protein%20AvrSr50%20escapes%20Sr50%20recognition%20by%20a%20substitution%20in%20a%20single%20surface%E2%80%90exposed%20residue&rft.jtitle=The%20New%20phytologist&rft.au=Ortiz,%20Diana&rft.date=2022-04&rft.volume=234&rft.issue=2&rft.spage=592&rft.epage=606&rft.pages=592-606&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.18011&rft_dat=%3Cproquest_pubme%3E2624952453%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4771-f6857ca97453354a9d426802fb2dfe1b6c2d15b27b3f2aacf6d9667331de0e973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2640226450&rft_id=info:pmid/35107838&rfr_iscdi=true