Loading…

Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation

Abstract Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accura...

Full description

Saved in:
Bibliographic Details
Published in:Brain communications 2022, Vol.4 (3), p.fcac115-fcac115
Main Authors: Sladky, Vladimir, Nejedly, Petr, Mivalt, Filip, Brinkmann, Benjamin H, Kim, Inyong, St. Louis, Erik K, Gregg, Nicholas M, Lundstrom, Brian N, Crowe, Chelsea M, Attia, Tal Pal, Crepeau, Daniel, Balzekas, Irena, Marks, Victoria S, Wheeler, Lydia P, Cimbalnik, Jan, Cook, Mark, Janca, Radek, Sturges, Beverly K, Leyde, Kent, Miller, Kai J, Van Gompel, Jamie J, Denison, Timothy, Worrell, Gregory A, Kremen, Vaclav
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3
cites cdi_FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3
container_end_page fcac115
container_issue 3
container_start_page fcac115
container_title Brain communications
container_volume 4
creator Sladky, Vladimir
Nejedly, Petr
Mivalt, Filip
Brinkmann, Benjamin H
Kim, Inyong
St. Louis, Erik K
Gregg, Nicholas M
Lundstrom, Brian N
Crowe, Chelsea M
Attia, Tal Pal
Crepeau, Daniel
Balzekas, Irena
Marks, Victoria S
Wheeler, Lydia P
Cimbalnik, Jan
Cook, Mark
Janca, Radek
Sturges, Beverly K
Leyde, Kent
Miller, Kai J
Van Gompel, Jamie J
Denison, Timothy
Worrell, Gregory A
Kremen, Vaclav
description Abstract Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients. Sladky et al. demonstrate accurate seizure diaries in dogs and humans receiving electrical stimulation for epilepsy while living in their home environments. Near real-time seizure diaries are created using an investigational device wirelessly streaming intracranial EEG to a handheld computer running a convolutional neural network with long- and short-term memory algorithm. Graphical Abstract Graphical Abstract
doi_str_mv 10.1093/braincomms/fcac115
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9217965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/braincomms/fcac115</oup_id><sourcerecordid>2681444464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3</originalsourceid><addsrcrecordid>eNqNkU1PHSEUhkmjqUb9A12YWXbhVGCAO7MxabRfiUk3uiZw7hlFZ4aRM5jory_23lq7KwmBhOd9gLyMfRD8k-Bdc-qTCxPEcaTTHhwIod-xfWkaWQvZrXbe7PfYEdEd51xqpZuufc_2Gr3S2jR6n00XgZYUfF5wXf12VhDrOUVAopiqvswlObgP001Fc7hHOqkIw3NOSJWbSghv3WOIOVXrnF4oHBCKEtywFdISxjy4JcTpkO32biA82q4H7Prrl6vz7_Xlz28_zj9f1qAUX-qeGwG6F751hgvnHEqvjDFSOw8d-rZrW-EVcGcADHQrYaCVynODct0r3xyws413zn7ENeBUPjHYOYXRpScbXbD_nkzh1t7ER9tJseqMLoKPW0GKDxlpsWMgwGFwE8ZMVppWqDKMKqjcoJAiUcL-9RrB7UtX9m9XdttVCR2_feBr5E8zBag3QMzz_wh_AUdoqB0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681444464</pqid></control><display><type>article</type><title>Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation</title><source>Open Access: PubMed Central</source><source>AUTh Library subscriptions: Oxford University Press</source><creator>Sladky, Vladimir ; Nejedly, Petr ; Mivalt, Filip ; Brinkmann, Benjamin H ; Kim, Inyong ; St. Louis, Erik K ; Gregg, Nicholas M ; Lundstrom, Brian N ; Crowe, Chelsea M ; Attia, Tal Pal ; Crepeau, Daniel ; Balzekas, Irena ; Marks, Victoria S ; Wheeler, Lydia P ; Cimbalnik, Jan ; Cook, Mark ; Janca, Radek ; Sturges, Beverly K ; Leyde, Kent ; Miller, Kai J ; Van Gompel, Jamie J ; Denison, Timothy ; Worrell, Gregory A ; Kremen, Vaclav</creator><creatorcontrib>Sladky, Vladimir ; Nejedly, Petr ; Mivalt, Filip ; Brinkmann, Benjamin H ; Kim, Inyong ; St. Louis, Erik K ; Gregg, Nicholas M ; Lundstrom, Brian N ; Crowe, Chelsea M ; Attia, Tal Pal ; Crepeau, Daniel ; Balzekas, Irena ; Marks, Victoria S ; Wheeler, Lydia P ; Cimbalnik, Jan ; Cook, Mark ; Janca, Radek ; Sturges, Beverly K ; Leyde, Kent ; Miller, Kai J ; Van Gompel, Jamie J ; Denison, Timothy ; Worrell, Gregory A ; Kremen, Vaclav</creatorcontrib><description>Abstract Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients. Sladky et al. demonstrate accurate seizure diaries in dogs and humans receiving electrical stimulation for epilepsy while living in their home environments. Near real-time seizure diaries are created using an investigational device wirelessly streaming intracranial EEG to a handheld computer running a convolutional neural network with long- and short-term memory algorithm. Graphical Abstract Graphical Abstract</description><identifier>ISSN: 2632-1297</identifier><identifier>EISSN: 2632-1297</identifier><identifier>DOI: 10.1093/braincomms/fcac115</identifier><identifier>PMID: 35755635</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original</subject><ispartof>Brain communications, 2022, Vol.4 (3), p.fcac115-fcac115</ispartof><rights>Published by Oxford University Press on behalf of the Guarantors of Brain 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US. 2022</rights><rights>Published by Oxford University Press on behalf of the Guarantors of Brain 2022. This work is written by (a) US Government employee(s) and is in the public domain in the US.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3</citedby><cites>FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3</cites><orcidid>0000-0002-2833-8826 ; 0000-0002-6151-043X ; 0000-0003-3456-9628 ; 0000-0002-2392-8608 ; 0000-0002-4712-7039 ; 0000-0003-4417-4240 ; 0000-0002-5310-5549 ; 0000-0001-8087-7870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217965/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217965/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,1591,4043,27956,27957,27958,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35755635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sladky, Vladimir</creatorcontrib><creatorcontrib>Nejedly, Petr</creatorcontrib><creatorcontrib>Mivalt, Filip</creatorcontrib><creatorcontrib>Brinkmann, Benjamin H</creatorcontrib><creatorcontrib>Kim, Inyong</creatorcontrib><creatorcontrib>St. Louis, Erik K</creatorcontrib><creatorcontrib>Gregg, Nicholas M</creatorcontrib><creatorcontrib>Lundstrom, Brian N</creatorcontrib><creatorcontrib>Crowe, Chelsea M</creatorcontrib><creatorcontrib>Attia, Tal Pal</creatorcontrib><creatorcontrib>Crepeau, Daniel</creatorcontrib><creatorcontrib>Balzekas, Irena</creatorcontrib><creatorcontrib>Marks, Victoria S</creatorcontrib><creatorcontrib>Wheeler, Lydia P</creatorcontrib><creatorcontrib>Cimbalnik, Jan</creatorcontrib><creatorcontrib>Cook, Mark</creatorcontrib><creatorcontrib>Janca, Radek</creatorcontrib><creatorcontrib>Sturges, Beverly K</creatorcontrib><creatorcontrib>Leyde, Kent</creatorcontrib><creatorcontrib>Miller, Kai J</creatorcontrib><creatorcontrib>Van Gompel, Jamie J</creatorcontrib><creatorcontrib>Denison, Timothy</creatorcontrib><creatorcontrib>Worrell, Gregory A</creatorcontrib><creatorcontrib>Kremen, Vaclav</creatorcontrib><title>Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation</title><title>Brain communications</title><addtitle>Brain Commun</addtitle><description>Abstract Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients. Sladky et al. demonstrate accurate seizure diaries in dogs and humans receiving electrical stimulation for epilepsy while living in their home environments. Near real-time seizure diaries are created using an investigational device wirelessly streaming intracranial EEG to a handheld computer running a convolutional neural network with long- and short-term memory algorithm. Graphical Abstract Graphical Abstract</description><subject>Original</subject><issn>2632-1297</issn><issn>2632-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU1PHSEUhkmjqUb9A12YWXbhVGCAO7MxabRfiUk3uiZw7hlFZ4aRM5jory_23lq7KwmBhOd9gLyMfRD8k-Bdc-qTCxPEcaTTHhwIod-xfWkaWQvZrXbe7PfYEdEd51xqpZuufc_2Gr3S2jR6n00XgZYUfF5wXf12VhDrOUVAopiqvswlObgP001Fc7hHOqkIw3NOSJWbSghv3WOIOVXrnF4oHBCKEtywFdISxjy4JcTpkO32biA82q4H7Prrl6vz7_Xlz28_zj9f1qAUX-qeGwG6F751hgvnHEqvjDFSOw8d-rZrW-EVcGcADHQrYaCVynODct0r3xyws413zn7ENeBUPjHYOYXRpScbXbD_nkzh1t7ER9tJseqMLoKPW0GKDxlpsWMgwGFwE8ZMVppWqDKMKqjcoJAiUcL-9RrB7UtX9m9XdttVCR2_feBr5E8zBag3QMzz_wh_AUdoqB0</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Sladky, Vladimir</creator><creator>Nejedly, Petr</creator><creator>Mivalt, Filip</creator><creator>Brinkmann, Benjamin H</creator><creator>Kim, Inyong</creator><creator>St. Louis, Erik K</creator><creator>Gregg, Nicholas M</creator><creator>Lundstrom, Brian N</creator><creator>Crowe, Chelsea M</creator><creator>Attia, Tal Pal</creator><creator>Crepeau, Daniel</creator><creator>Balzekas, Irena</creator><creator>Marks, Victoria S</creator><creator>Wheeler, Lydia P</creator><creator>Cimbalnik, Jan</creator><creator>Cook, Mark</creator><creator>Janca, Radek</creator><creator>Sturges, Beverly K</creator><creator>Leyde, Kent</creator><creator>Miller, Kai J</creator><creator>Van Gompel, Jamie J</creator><creator>Denison, Timothy</creator><creator>Worrell, Gregory A</creator><creator>Kremen, Vaclav</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2833-8826</orcidid><orcidid>https://orcid.org/0000-0002-6151-043X</orcidid><orcidid>https://orcid.org/0000-0003-3456-9628</orcidid><orcidid>https://orcid.org/0000-0002-2392-8608</orcidid><orcidid>https://orcid.org/0000-0002-4712-7039</orcidid><orcidid>https://orcid.org/0000-0003-4417-4240</orcidid><orcidid>https://orcid.org/0000-0002-5310-5549</orcidid><orcidid>https://orcid.org/0000-0001-8087-7870</orcidid></search><sort><creationdate>2022</creationdate><title>Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation</title><author>Sladky, Vladimir ; Nejedly, Petr ; Mivalt, Filip ; Brinkmann, Benjamin H ; Kim, Inyong ; St. Louis, Erik K ; Gregg, Nicholas M ; Lundstrom, Brian N ; Crowe, Chelsea M ; Attia, Tal Pal ; Crepeau, Daniel ; Balzekas, Irena ; Marks, Victoria S ; Wheeler, Lydia P ; Cimbalnik, Jan ; Cook, Mark ; Janca, Radek ; Sturges, Beverly K ; Leyde, Kent ; Miller, Kai J ; Van Gompel, Jamie J ; Denison, Timothy ; Worrell, Gregory A ; Kremen, Vaclav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sladky, Vladimir</creatorcontrib><creatorcontrib>Nejedly, Petr</creatorcontrib><creatorcontrib>Mivalt, Filip</creatorcontrib><creatorcontrib>Brinkmann, Benjamin H</creatorcontrib><creatorcontrib>Kim, Inyong</creatorcontrib><creatorcontrib>St. Louis, Erik K</creatorcontrib><creatorcontrib>Gregg, Nicholas M</creatorcontrib><creatorcontrib>Lundstrom, Brian N</creatorcontrib><creatorcontrib>Crowe, Chelsea M</creatorcontrib><creatorcontrib>Attia, Tal Pal</creatorcontrib><creatorcontrib>Crepeau, Daniel</creatorcontrib><creatorcontrib>Balzekas, Irena</creatorcontrib><creatorcontrib>Marks, Victoria S</creatorcontrib><creatorcontrib>Wheeler, Lydia P</creatorcontrib><creatorcontrib>Cimbalnik, Jan</creatorcontrib><creatorcontrib>Cook, Mark</creatorcontrib><creatorcontrib>Janca, Radek</creatorcontrib><creatorcontrib>Sturges, Beverly K</creatorcontrib><creatorcontrib>Leyde, Kent</creatorcontrib><creatorcontrib>Miller, Kai J</creatorcontrib><creatorcontrib>Van Gompel, Jamie J</creatorcontrib><creatorcontrib>Denison, Timothy</creatorcontrib><creatorcontrib>Worrell, Gregory A</creatorcontrib><creatorcontrib>Kremen, Vaclav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sladky, Vladimir</au><au>Nejedly, Petr</au><au>Mivalt, Filip</au><au>Brinkmann, Benjamin H</au><au>Kim, Inyong</au><au>St. Louis, Erik K</au><au>Gregg, Nicholas M</au><au>Lundstrom, Brian N</au><au>Crowe, Chelsea M</au><au>Attia, Tal Pal</au><au>Crepeau, Daniel</au><au>Balzekas, Irena</au><au>Marks, Victoria S</au><au>Wheeler, Lydia P</au><au>Cimbalnik, Jan</au><au>Cook, Mark</au><au>Janca, Radek</au><au>Sturges, Beverly K</au><au>Leyde, Kent</au><au>Miller, Kai J</au><au>Van Gompel, Jamie J</au><au>Denison, Timothy</au><au>Worrell, Gregory A</au><au>Kremen, Vaclav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation</atitle><jtitle>Brain communications</jtitle><addtitle>Brain Commun</addtitle><date>2022</date><risdate>2022</risdate><volume>4</volume><issue>3</issue><spage>fcac115</spage><epage>fcac115</epage><pages>fcac115-fcac115</pages><issn>2632-1297</issn><eissn>2632-1297</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Senior and corresponding authors.</notes><notes>Vladimir Sladky and Petr Nejedly contributed equally to this work.</notes><abstract>Abstract Early implantable epilepsy therapy devices provided open-loop electrical stimulation without brain sensing, computing, or an interface for synchronized behavioural inputs from patients. Recent epilepsy stimulation devices provide brain sensing but have not yet developed analytics for accurately tracking and quantifying behaviour and seizures. Here we describe a distributed brain co-processor providing an intuitive bi-directional interface between patient, implanted neural stimulation and sensing device, and local and distributed computing resources. Automated analysis of continuous streaming electrophysiology is synchronized with patient reports using a handheld device and integrated with distributed cloud computing resources for quantifying seizures, interictal epileptiform spikes and patient symptoms during therapeutic electrical brain stimulation. The classification algorithms for interictal epileptiform spikes and seizures were developed and parameterized using long-term ambulatory data from nine humans and eight canines with epilepsy, and then implemented prospectively in out-of-sample testing in two pet canines and four humans with drug-resistant epilepsy living in their natural environments. Accurate seizure diaries are needed as the primary clinical outcome measure of epilepsy therapy and to guide brain-stimulation optimization. The brain co-processor system described here enables tracking interictal epileptiform spikes, seizures and correlation with patient behavioural reports. In the future, correlation of spikes and seizures with behaviour will allow more detailed investigation of the clinical impact of spikes and seizures on patients. Sladky et al. demonstrate accurate seizure diaries in dogs and humans receiving electrical stimulation for epilepsy while living in their home environments. Near real-time seizure diaries are created using an investigational device wirelessly streaming intracranial EEG to a handheld computer running a convolutional neural network with long- and short-term memory algorithm. Graphical Abstract Graphical Abstract</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35755635</pmid><doi>10.1093/braincomms/fcac115</doi><orcidid>https://orcid.org/0000-0002-2833-8826</orcidid><orcidid>https://orcid.org/0000-0002-6151-043X</orcidid><orcidid>https://orcid.org/0000-0003-3456-9628</orcidid><orcidid>https://orcid.org/0000-0002-2392-8608</orcidid><orcidid>https://orcid.org/0000-0002-4712-7039</orcidid><orcidid>https://orcid.org/0000-0003-4417-4240</orcidid><orcidid>https://orcid.org/0000-0002-5310-5549</orcidid><orcidid>https://orcid.org/0000-0001-8087-7870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-1297
ispartof Brain communications, 2022, Vol.4 (3), p.fcac115-fcac115
issn 2632-1297
2632-1297
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9217965
source Open Access: PubMed Central; AUTh Library subscriptions: Oxford University Press
subjects Original
title Distributed brain co-processor for tracking spikes, seizures and behaviour during electrical brain stimulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T01%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20brain%20co-processor%20for%20tracking%20spikes,%20seizures%20and%20behaviour%20during%20electrical%20brain%20stimulation&rft.jtitle=Brain%20communications&rft.au=Sladky,%20Vladimir&rft.date=2022&rft.volume=4&rft.issue=3&rft.spage=fcac115&rft.epage=fcac115&rft.pages=fcac115-fcac115&rft.issn=2632-1297&rft.eissn=2632-1297&rft_id=info:doi/10.1093/braincomms/fcac115&rft_dat=%3Cproquest_pubme%3E2681444464%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-f061c5f1b8a601aaae2b466625abc9eb89881b4c0a6cc6c9716c824b06e2df4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2681444464&rft_id=info:pmid/35755635&rft_oup_id=10.1093/braincomms/fcac115&rfr_iscdi=true