Loading…

Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors

Bone mass increases after error‐loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short‐term (minutes) by changing F‐actin stress f...

Full description

Saved in:
Bibliographic Details
Published in:Physiological reports 2021-06, Vol.9 (12), p.e14917-n/a
Main Authors: Jin, Jianfeng, Seddiqi, Hadi, Bakker, Astrid D., Wu, Gang, Verstappen, Johanna F. M., Haroon, Mohammad, Korfage, Joannes A. M., Zandieh‐Doulabi, Behrouz, Werner, Arie, Klein‐Nulend, Jenneke, Jaspers, Richard T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3
cites cdi_FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3
container_end_page n/a
container_issue 12
container_start_page e14917
container_title Physiological reports
container_volume 9
creator Jin, Jianfeng
Seddiqi, Hadi
Bakker, Astrid D.
Wu, Gang
Verstappen, Johanna F. M.
Haroon, Mohammad
Korfage, Joannes A. M.
Zandieh‐Doulabi, Behrouz
Werner, Arie
Klein‐Nulend, Jenneke
Jaspers, Richard T.
description Bone mass increases after error‐loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short‐term (minutes) by changing F‐actin stress fiber distribution, in the intermediate‐term (hours) by signaling molecule production, and in the long‐term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3‐E1 pre‐osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0–6 h, or 21/28 days of post‐incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre‐osteoblast inside a parallel‐plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3‐fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long‐term, which may explain enhanced bone formation resulting from mechanical stimuli. Pulsating fluid flow has distinct temporal impact on pre‐osteoblast behavior and osteogenic differentiation. Initially, PFF increased nitric oxide production, followed in the short‐term by F‐actin stress fiber changes. In the long‐term, PFF did not enhance collagen production, but increased mineralization. This indicates that a single bout of mechanical loading, triggering release of soluble factors, stimulates mineralization in the long‐term.
doi_str_mv 10.14814/phy2.14917
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545864705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3</originalsourceid><addsrcrecordid>eNp9kc1qFTEYhgdBbKlduZeAG0GO5neS2QhSqi0U7EJBVyGT-XImJWdyTCYtBzdegtfolTSdU4u6cJOEL08e3vA2zTOCXxOuCH-zHXe0HjsiHzWHFAuyUkR-OWiOc77CGBPMWIf5k-aAcSI5puSw-X5ZQjazn9bIheKHusYbZJwDO2e0TfDrx8-YZ4h9MHlGPYzm2seEzDSgZb6GyVs0-PoiwTT76ooTmscUy3qsgjgUu4yiQzmG0gdAztg5pvy0eexMyHB8vx81n9-ffjo5W118_HB-8u5iZbmgcgVcKuacYR0AJR1Q6ShgxXBLOYWWKsEsx4T0nbWCKMal6AVpDR0GbCV17Kh5u_duS7-BwdaYyQS9TX5j0k5H4_XfN5Mf9Tpea0UZ51JWwct7QYrfCuRZb3y2EIKZIJasqeCixaqVoqIv_kGvYklT_d5CqZZLfEe92lM2xZwTuIcwBOulS33XpV66rPTzP_M_sL9brADdAzc-wO5_Ln159pXurbfRHa9n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545864705</pqid></control><display><type>article</type><title>Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors</title><source>Open Access: PubMed Central</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Jin, Jianfeng ; Seddiqi, Hadi ; Bakker, Astrid D. ; Wu, Gang ; Verstappen, Johanna F. M. ; Haroon, Mohammad ; Korfage, Joannes A. M. ; Zandieh‐Doulabi, Behrouz ; Werner, Arie ; Klein‐Nulend, Jenneke ; Jaspers, Richard T.</creator><creatorcontrib>Jin, Jianfeng ; Seddiqi, Hadi ; Bakker, Astrid D. ; Wu, Gang ; Verstappen, Johanna F. M. ; Haroon, Mohammad ; Korfage, Joannes A. M. ; Zandieh‐Doulabi, Behrouz ; Werner, Arie ; Klein‐Nulend, Jenneke ; Jaspers, Richard T.</creatorcontrib><description>Bone mass increases after error‐loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short‐term (minutes) by changing F‐actin stress fiber distribution, in the intermediate‐term (hours) by signaling molecule production, and in the long‐term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3‐E1 pre‐osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0–6 h, or 21/28 days of post‐incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre‐osteoblast inside a parallel‐plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3‐fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long‐term, which may explain enhanced bone formation resulting from mechanical stimuli. Pulsating fluid flow has distinct temporal impact on pre‐osteoblast behavior and osteogenic differentiation. Initially, PFF increased nitric oxide production, followed in the short‐term by F‐actin stress fiber changes. In the long‐term, PFF did not enhance collagen production, but increased mineralization. This indicates that a single bout of mechanical loading, triggering release of soluble factors, stimulates mineralization in the long‐term.</description><identifier>EISSN: 2051-817X</identifier><identifier>DOI: 10.14814/phy2.14917</identifier><identifier>PMID: 34174021</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; Actins - metabolism ; Actins - physiology ; Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Bone growth ; Bone mass ; Boundary conditions ; Cbfa-1 protein ; Cell Differentiation - physiology ; Cell Line ; Collagen ; Collagen - metabolism ; Computer applications ; Cytoskeleton ; Fibroblast growth factor 2 ; Fibroblasts ; Finite Element Analysis ; finite element modeling ; Fluid dynamics ; Fluid flow ; F‐actin stress fiber ; Gene Expression ; Growth factors ; Mechanical loading ; Mechanical stimuli ; Metabolism ; Mice ; Mineralization ; Morphology ; Nitric oxide ; Nitric Oxide - metabolism ; Original ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - metabolism ; Osteoblasts - physiology ; Osteocytes ; Osteogenesis ; Osteogenesis - physiology ; osteogenic differentiation ; Physiology ; pre‐osteoblast ; Pseudopodia ; Pulsatile Flow - physiology ; Shear stress</subject><ispartof>Physiological reports, 2021-06, Vol.9 (12), p.e14917-n/a</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society</rights><rights>2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3</citedby><cites>FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3</cites><orcidid>0000-0001-7661-199X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2545864705/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2545864705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,11589,25783,27957,27958,37047,37048,44625,46087,46511,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34174021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Jianfeng</creatorcontrib><creatorcontrib>Seddiqi, Hadi</creatorcontrib><creatorcontrib>Bakker, Astrid D.</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Verstappen, Johanna F. M.</creatorcontrib><creatorcontrib>Haroon, Mohammad</creatorcontrib><creatorcontrib>Korfage, Joannes A. M.</creatorcontrib><creatorcontrib>Zandieh‐Doulabi, Behrouz</creatorcontrib><creatorcontrib>Werner, Arie</creatorcontrib><creatorcontrib>Klein‐Nulend, Jenneke</creatorcontrib><creatorcontrib>Jaspers, Richard T.</creatorcontrib><title>Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors</title><title>Physiological reports</title><addtitle>Physiol Rep</addtitle><description>Bone mass increases after error‐loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short‐term (minutes) by changing F‐actin stress fiber distribution, in the intermediate‐term (hours) by signaling molecule production, and in the long‐term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3‐E1 pre‐osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0–6 h, or 21/28 days of post‐incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre‐osteoblast inside a parallel‐plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3‐fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long‐term, which may explain enhanced bone formation resulting from mechanical stimuli. Pulsating fluid flow has distinct temporal impact on pre‐osteoblast behavior and osteogenic differentiation. Initially, PFF increased nitric oxide production, followed in the short‐term by F‐actin stress fiber changes. In the long‐term, PFF did not enhance collagen production, but increased mineralization. This indicates that a single bout of mechanical loading, triggering release of soluble factors, stimulates mineralization in the long‐term.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Actins - physiology</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Bone growth</subject><subject>Bone mass</subject><subject>Boundary conditions</subject><subject>Cbfa-1 protein</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Collagen</subject><subject>Collagen - metabolism</subject><subject>Computer applications</subject><subject>Cytoskeleton</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblasts</subject><subject>Finite Element Analysis</subject><subject>finite element modeling</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>F‐actin stress fiber</subject><subject>Gene Expression</subject><subject>Growth factors</subject><subject>Mechanical loading</subject><subject>Mechanical stimuli</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mineralization</subject><subject>Morphology</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Original</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - physiology</subject><subject>Osteocytes</subject><subject>Osteogenesis</subject><subject>Osteogenesis - physiology</subject><subject>osteogenic differentiation</subject><subject>Physiology</subject><subject>pre‐osteoblast</subject><subject>Pseudopodia</subject><subject>Pulsatile Flow - physiology</subject><subject>Shear stress</subject><issn>2051-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kc1qFTEYhgdBbKlduZeAG0GO5neS2QhSqi0U7EJBVyGT-XImJWdyTCYtBzdegtfolTSdU4u6cJOEL08e3vA2zTOCXxOuCH-zHXe0HjsiHzWHFAuyUkR-OWiOc77CGBPMWIf5k-aAcSI5puSw-X5ZQjazn9bIheKHusYbZJwDO2e0TfDrx8-YZ4h9MHlGPYzm2seEzDSgZb6GyVs0-PoiwTT76ooTmscUy3qsgjgUu4yiQzmG0gdAztg5pvy0eexMyHB8vx81n9-ffjo5W118_HB-8u5iZbmgcgVcKuacYR0AJR1Q6ShgxXBLOYWWKsEsx4T0nbWCKMal6AVpDR0GbCV17Kh5u_duS7-BwdaYyQS9TX5j0k5H4_XfN5Mf9Tpea0UZ51JWwct7QYrfCuRZb3y2EIKZIJasqeCixaqVoqIv_kGvYklT_d5CqZZLfEe92lM2xZwTuIcwBOulS33XpV66rPTzP_M_sL9brADdAzc-wO5_Ln159pXurbfRHa9n</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Jin, Jianfeng</creator><creator>Seddiqi, Hadi</creator><creator>Bakker, Astrid D.</creator><creator>Wu, Gang</creator><creator>Verstappen, Johanna F. M.</creator><creator>Haroon, Mohammad</creator><creator>Korfage, Joannes A. M.</creator><creator>Zandieh‐Doulabi, Behrouz</creator><creator>Werner, Arie</creator><creator>Klein‐Nulend, Jenneke</creator><creator>Jaspers, Richard T.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7661-199X</orcidid></search><sort><creationdate>202106</creationdate><title>Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors</title><author>Jin, Jianfeng ; Seddiqi, Hadi ; Bakker, Astrid D. ; Wu, Gang ; Verstappen, Johanna F. M. ; Haroon, Mohammad ; Korfage, Joannes A. M. ; Zandieh‐Doulabi, Behrouz ; Werner, Arie ; Klein‐Nulend, Jenneke ; Jaspers, Richard T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Actins - physiology</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Bone growth</topic><topic>Bone mass</topic><topic>Boundary conditions</topic><topic>Cbfa-1 protein</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Collagen</topic><topic>Collagen - metabolism</topic><topic>Computer applications</topic><topic>Cytoskeleton</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblasts</topic><topic>Finite Element Analysis</topic><topic>finite element modeling</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>F‐actin stress fiber</topic><topic>Gene Expression</topic><topic>Growth factors</topic><topic>Mechanical loading</topic><topic>Mechanical stimuli</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mineralization</topic><topic>Morphology</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Original</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - physiology</topic><topic>Osteocytes</topic><topic>Osteogenesis</topic><topic>Osteogenesis - physiology</topic><topic>osteogenic differentiation</topic><topic>Physiology</topic><topic>pre‐osteoblast</topic><topic>Pseudopodia</topic><topic>Pulsatile Flow - physiology</topic><topic>Shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jianfeng</creatorcontrib><creatorcontrib>Seddiqi, Hadi</creatorcontrib><creatorcontrib>Bakker, Astrid D.</creatorcontrib><creatorcontrib>Wu, Gang</creatorcontrib><creatorcontrib>Verstappen, Johanna F. M.</creatorcontrib><creatorcontrib>Haroon, Mohammad</creatorcontrib><creatorcontrib>Korfage, Joannes A. M.</creatorcontrib><creatorcontrib>Zandieh‐Doulabi, Behrouz</creatorcontrib><creatorcontrib>Werner, Arie</creatorcontrib><creatorcontrib>Klein‐Nulend, Jenneke</creatorcontrib><creatorcontrib>Jaspers, Richard T.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jianfeng</au><au>Seddiqi, Hadi</au><au>Bakker, Astrid D.</au><au>Wu, Gang</au><au>Verstappen, Johanna F. M.</au><au>Haroon, Mohammad</au><au>Korfage, Joannes A. M.</au><au>Zandieh‐Doulabi, Behrouz</au><au>Werner, Arie</au><au>Klein‐Nulend, Jenneke</au><au>Jaspers, Richard T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors</atitle><jtitle>Physiological reports</jtitle><addtitle>Physiol Rep</addtitle><date>2021-06</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>e14917</spage><epage>n/a</epage><pages>e14917-n/a</pages><eissn>2051-817X</eissn><notes>Funding information</notes><notes>This work was granted by the China Scholarship Council [CSC, No. 201608530156]. This work was also granted by Health‐Holland (Project No. LSHM19016, “BB”).</notes><notes>Jenneke Klein‐Nulend and Richard T. Jaspers shared last authorship.</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Bone mass increases after error‐loading, even in the absence of osteocytes. Loaded osteoblasts may produce a combination of growth factors affecting adjacent osteoblast differentiation. We hypothesized that osteoblasts respond to a single load in the short‐term (minutes) by changing F‐actin stress fiber distribution, in the intermediate‐term (hours) by signaling molecule production, and in the long‐term (days) by differentiation. Furthermore, growth factors produced during and after mechanical loading by pulsating fluid flow (PFF) will affect osteogenic differentiation. MC3T3‐E1 pre‐osteoblasts were either/not stimulated by 60 min PFF (amplitude, 1.0 Pa; frequency, 1 Hz; peak shear stress rate, 6.5 Pa/s) followed by 0–6 h, or 21/28 days of post‐incubation without PFF. Computational analysis revealed that PFF immediately changed distribution and magnitude of fluid dynamics over an adherent pre‐osteoblast inside a parallel‐plate flow chamber (immediate impact). Within 60 min, PFF increased nitric oxide production (5.3‐fold), altered actin distribution, but did not affect cell pseudopodia length and cell orientation (initial downstream impact). PFF transiently stimulated Fgf2, Runx2, Ocn, Dmp1, and Col1⍺1 gene expression between 0 and 6 h after PFF cessation. PFF did not affect alkaline phosphatase nor collagen production after 21 days, but altered mineralization after 28 days. In conclusion, a single bout of PFF with indirect associated release of biochemical factors, stimulates osteoblast differentiation in the long‐term, which may explain enhanced bone formation resulting from mechanical stimuli. Pulsating fluid flow has distinct temporal impact on pre‐osteoblast behavior and osteogenic differentiation. Initially, PFF increased nitric oxide production, followed in the short‐term by F‐actin stress fiber changes. In the long‐term, PFF did not enhance collagen production, but increased mineralization. This indicates that a single bout of mechanical loading, triggering release of soluble factors, stimulates mineralization in the long‐term.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34174021</pmid><doi>10.14814/phy2.14917</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7661-199X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2051-817X
ispartof Physiological reports, 2021-06, Vol.9 (12), p.e14917-n/a
issn 2051-817X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8234477
source Open Access: PubMed Central; Open Access: Wiley-Blackwell Open Access Journals; ProQuest - Publicly Available Content Database
subjects Actin
Actins - metabolism
Actins - physiology
Alkaline phosphatase
Alkaline Phosphatase - metabolism
Animals
Bone growth
Bone mass
Boundary conditions
Cbfa-1 protein
Cell Differentiation - physiology
Cell Line
Collagen
Collagen - metabolism
Computer applications
Cytoskeleton
Fibroblast growth factor 2
Fibroblasts
Finite Element Analysis
finite element modeling
Fluid dynamics
Fluid flow
F‐actin stress fiber
Gene Expression
Growth factors
Mechanical loading
Mechanical stimuli
Metabolism
Mice
Mineralization
Morphology
Nitric oxide
Nitric Oxide - metabolism
Original
Osteoblastogenesis
Osteoblasts
Osteoblasts - metabolism
Osteoblasts - physiology
Osteocytes
Osteogenesis
Osteogenesis - physiology
osteogenic differentiation
Physiology
pre‐osteoblast
Pseudopodia
Pulsatile Flow - physiology
Shear stress
title Pulsating fluid flow affects pre‐osteoblast behavior and osteogenic differentiation through production of soluble factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T01%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulsating%20fluid%20flow%20affects%20pre%E2%80%90osteoblast%20behavior%20and%20osteogenic%20differentiation%20through%20production%20of%20soluble%20factors&rft.jtitle=Physiological%20reports&rft.au=Jin,%20Jianfeng&rft.date=2021-06&rft.volume=9&rft.issue=12&rft.spage=e14917&rft.epage=n/a&rft.pages=e14917-n/a&rft.eissn=2051-817X&rft_id=info:doi/10.14814/phy2.14917&rft_dat=%3Cproquest_pubme%3E2545864705%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4527-e4783ffa39ee219e27f2e08306242e62853c4011b9cc5183475b516a2dd0c72f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2545864705&rft_id=info:pmid/34174021&rfr_iscdi=true