Loading…

Broken detailed balance at mesoscopic scales in active biological systems

Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes th...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2016-04, Vol.352 (6285), p.604-607
Main Authors: Battle, Christopher, Broedersz, Chase P., Fakhri, Nikta, Geyer, Veikko F., Howard, Jonathon, Schmidt, Christoph F., MacKintosh, Fred C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3
cites cdi_FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3
container_end_page 607
container_issue 6285
container_start_page 604
container_title Science (American Association for the Advancement of Science)
container_volume 352
creator Battle, Christopher
Broedersz, Chase P.
Fakhri, Nikta
Geyer, Veikko F.
Howard, Jonathon
Schmidt, Christoph F.
MacKintosh, Fred C.
description Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes through chemical states, which violate detailed balance at the molecular scale. Here we introduce a method to probe for broken detailed balance and demonstrate how such nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. With a model, we show how the breaking of detailed balance can also be quantified in stationary, nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues.
doi_str_mv 10.1126/science.aac8167
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8164727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24744874</jstor_id><sourcerecordid>24744874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcuaf0Vj3NBKhUflSpxgbPlTGaLlyRe7Gyl_ve47FJoTyP5_eZpnh9jr6Q4lVLZs4KRZqTTENBJC0_YSoqubTol9FO2EkLbxgloj9nzUjZCVK3Tz9ixgrosDKzY5YecftLMB1pCHGngfRhDdeRh4ROVVDBtI_KCYaTC48wDLvGGeB_TmK5jfebltiw0lRfsaB3GQi8P84R9__Tx28WX5urr58uL86sGjdFLAw4Qe9MLNbRGketJBLUGVEFqN2iwFqTtFEmUfW_kWqKxFi2ig04ZR_qEvd_7bnf9RAPSvOQw-m2OU8i3PoXoHypz_OGv042vH2RAQTV4dzDI6deOyuKnWJDGmpvSrngJrgVtpbMVffsI3aRdnmu8P5SyIFpTqbM9hTmVkml9f4wU_q4mf6jJH2qqG2_-z3DP_-2lAq_3wKYsKf_TDRjjwOjfvH-alQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785267054</pqid></control><display><type>article</type><title>Broken detailed balance at mesoscopic scales in active biological systems</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><creator>Battle, Christopher ; Broedersz, Chase P. ; Fakhri, Nikta ; Geyer, Veikko F. ; Howard, Jonathon ; Schmidt, Christoph F. ; MacKintosh, Fred C.</creator><creatorcontrib>Battle, Christopher ; Broedersz, Chase P. ; Fakhri, Nikta ; Geyer, Veikko F. ; Howard, Jonathon ; Schmidt, Christoph F. ; MacKintosh, Fred C.</creatorcontrib><description>Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes through chemical states, which violate detailed balance at the molecular scale. Here we introduce a method to probe for broken detailed balance and demonstrate how such nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. With a model, we show how the breaking of detailed balance can also be quantified in stationary, nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aac8167</identifier><identifier>PMID: 27126047</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Chlamydomonas reinhardtii - physiology ; Cilia - physiology ; Dogs ; Epithelial Cells - physiology ; Equilibrium ; Flagella - physiology ; Madin Darby Canine Kidney Cells ; Microscopy ; Microscopy - methods ; Models, Biological ; Molecular biology ; Motion ; Thermodynamics</subject><ispartof>Science (American Association for the Advancement of Science), 2016-04, Vol.352 (6285), p.604-607</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3</citedby><cites>FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24744874$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24744874$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,786,790,891,2902,2903,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27126047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Battle, Christopher</creatorcontrib><creatorcontrib>Broedersz, Chase P.</creatorcontrib><creatorcontrib>Fakhri, Nikta</creatorcontrib><creatorcontrib>Geyer, Veikko F.</creatorcontrib><creatorcontrib>Howard, Jonathon</creatorcontrib><creatorcontrib>Schmidt, Christoph F.</creatorcontrib><creatorcontrib>MacKintosh, Fred C.</creatorcontrib><title>Broken detailed balance at mesoscopic scales in active biological systems</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes through chemical states, which violate detailed balance at the molecular scale. Here we introduce a method to probe for broken detailed balance and demonstrate how such nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. With a model, we show how the breaking of detailed balance can also be quantified in stationary, nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues.</description><subject>Animals</subject><subject>Chlamydomonas reinhardtii - physiology</subject><subject>Cilia - physiology</subject><subject>Dogs</subject><subject>Epithelial Cells - physiology</subject><subject>Equilibrium</subject><subject>Flagella - physiology</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Motion</subject><subject>Thermodynamics</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAQxS1ERZfCmRPIEhcuaf0Vj3NBKhUflSpxgbPlTGaLlyRe7Gyl_ve47FJoTyP5_eZpnh9jr6Q4lVLZs4KRZqTTENBJC0_YSoqubTol9FO2EkLbxgloj9nzUjZCVK3Tz9ixgrosDKzY5YecftLMB1pCHGngfRhDdeRh4ROVVDBtI_KCYaTC48wDLvGGeB_TmK5jfebltiw0lRfsaB3GQi8P84R9__Tx28WX5urr58uL86sGjdFLAw4Qe9MLNbRGketJBLUGVEFqN2iwFqTtFEmUfW_kWqKxFi2ig04ZR_qEvd_7bnf9RAPSvOQw-m2OU8i3PoXoHypz_OGv042vH2RAQTV4dzDI6deOyuKnWJDGmpvSrngJrgVtpbMVffsI3aRdnmu8P5SyIFpTqbM9hTmVkml9f4wU_q4mf6jJH2qqG2_-z3DP_-2lAq_3wKYsKf_TDRjjwOjfvH-alQ</recordid><startdate>20160429</startdate><enddate>20160429</enddate><creator>Battle, Christopher</creator><creator>Broedersz, Chase P.</creator><creator>Fakhri, Nikta</creator><creator>Geyer, Veikko F.</creator><creator>Howard, Jonathon</creator><creator>Schmidt, Christoph F.</creator><creator>MacKintosh, Fred C.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160429</creationdate><title>Broken detailed balance at mesoscopic scales in active biological systems</title><author>Battle, Christopher ; Broedersz, Chase P. ; Fakhri, Nikta ; Geyer, Veikko F. ; Howard, Jonathon ; Schmidt, Christoph F. ; MacKintosh, Fred C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Chlamydomonas reinhardtii - physiology</topic><topic>Cilia - physiology</topic><topic>Dogs</topic><topic>Epithelial Cells - physiology</topic><topic>Equilibrium</topic><topic>Flagella - physiology</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Motion</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battle, Christopher</creatorcontrib><creatorcontrib>Broedersz, Chase P.</creatorcontrib><creatorcontrib>Fakhri, Nikta</creatorcontrib><creatorcontrib>Geyer, Veikko F.</creatorcontrib><creatorcontrib>Howard, Jonathon</creatorcontrib><creatorcontrib>Schmidt, Christoph F.</creatorcontrib><creatorcontrib>MacKintosh, Fred C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battle, Christopher</au><au>Broedersz, Chase P.</au><au>Fakhri, Nikta</au><au>Geyer, Veikko F.</au><au>Howard, Jonathon</au><au>Schmidt, Christoph F.</au><au>MacKintosh, Fred C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broken detailed balance at mesoscopic scales in active biological systems</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-04-29</date><risdate>2016</risdate><volume>352</volume><issue>6285</issue><spage>604</spage><epage>607</epage><pages>604-607</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Systems in thermodynamic equilibrium are not only characterized by time-independent macroscopic properties, but also satisfy the principle of detailed balance in the transitions between microscopic configurations. Living systems function out of equilibrium and are characterized by directed fluxes through chemical states, which violate detailed balance at the molecular scale. Here we introduce a method to probe for broken detailed balance and demonstrate how such nonequilibrium dynamics are manifest at the mesosopic scale. The periodic beating of an isolated flagellum from Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes. With a model, we show how the breaking of detailed balance can also be quantified in stationary, nonequilibrium stochastic systems in the absence of periodic motion. We further demonstrate such broken detailed balance in the nonperiodic fluctuations of primary cilia of epithelial cells. Our analysis provides a general tool to identify nonequilibrium dynamics in cells and tissues.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27126047</pmid><doi>10.1126/science.aac8167</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-04, Vol.352 (6285), p.604-607
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8164727
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection【Remote access available】
subjects Animals
Chlamydomonas reinhardtii - physiology
Cilia - physiology
Dogs
Epithelial Cells - physiology
Equilibrium
Flagella - physiology
Madin Darby Canine Kidney Cells
Microscopy
Microscopy - methods
Models, Biological
Molecular biology
Motion
Thermodynamics
title Broken detailed balance at mesoscopic scales in active biological systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broken%20detailed%20balance%20at%20mesoscopic%20scales%20in%20active%20biological%20systems&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Battle,%20Christopher&rft.date=2016-04-29&rft.volume=352&rft.issue=6285&rft.spage=604&rft.epage=607&rft.pages=604-607&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aac8167&rft_dat=%3Cjstor_pubme%3E24744874%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-787ccb4b02d542e8be0a2f7c2a138d376671692e1c1bb41f1c466c6cc879248e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1785267054&rft_id=info:pmid/27126047&rft_jstor_id=24744874&rfr_iscdi=true