Loading…

Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2020-11, Vol.32 (11), p.3576-3597
Main Authors: Du, Juan, Kirui, Alex, Huang, Shixin, Wang, Lianglei, Barnes, William J, Kiemle, Sarah N, Zheng, Yunzhen, Rui, Yue, Ruan, Mei, Qi, Shiqian, Kim, Seong H, Wang, Tuo, Cosgrove, Daniel J, Anderson, Charles T, Xiao, Chaowen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793
cites cdi_FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793
container_end_page 3597
container_issue 11
container_start_page 3576
container_title The Plant cell
container_volume 32
creator Du, Juan
Kirui, Alex
Huang, Shixin
Wang, Lianglei
Barnes, William J
Kiemle, Sarah N
Zheng, Yunzhen
Rui, Yue
Ruan, Mei
Qi, Shiqian
Kim, Seong H
Wang, Tuo
Cosgrove, Daniel J
Anderson, Charles T
Xiao, Chaowen
description Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis ( ) , and In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.
doi_str_mv 10.1105/tpc.20.00252
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2440475029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793</originalsourceid><addsrcrecordid>eNpVkc9rFDEUx4NYbK3ePMvgyYOzJplJMrkI6_qjC11W0aK3kHmT6UayyTbJKPvfm3XbUiGQwPvwyXvvi9ALgmeEYPY272BG8QxjyugjdEZYQ2squ5-Pyxu3uG45I6foaUq_MMZEEPkEnTa06xpByBn6s5qyzjb4VFlf5Y2pvhjI5bkyebN3OWqfRhN1MtXXq_m35Wr9YU2rpR_dZDyYamGcm1wo5fc2pL0vhmRTpf1Q_dDOFTKb62jz_qCfR93bIewK8QydjNol8_z2PkdXnz5-X1zUl-vPy8X8soZWiFxLOIxVjpCEcRhgkCPlWvY9iE7LQQAx_chHiUnTtI0GAqzTREPPuRZCNufo3dG7m_qtGcD4MpJTu2i3Ou5V0Fb9X_F2o67DbyU4wVTSInh1FISUrUpgs4ENBO_LmhThTHScFej17S8x3EwmZbW1CcpqtDdhSoq2LW4FK8KCvjmiEENK0Yz3vRCsDoGqEqiiWP0LtOAvH_Z_D98l2PwFeuWeIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440475029</pqid></control><display><type>article</type><title>Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis</title><source>Oxford Academic Journals (OUP)</source><creator>Du, Juan ; Kirui, Alex ; Huang, Shixin ; Wang, Lianglei ; Barnes, William J ; Kiemle, Sarah N ; Zheng, Yunzhen ; Rui, Yue ; Ruan, Mei ; Qi, Shiqian ; Kim, Seong H ; Wang, Tuo ; Cosgrove, Daniel J ; Anderson, Charles T ; Xiao, Chaowen</creator><creatorcontrib>Du, Juan ; Kirui, Alex ; Huang, Shixin ; Wang, Lianglei ; Barnes, William J ; Kiemle, Sarah N ; Zheng, Yunzhen ; Rui, Yue ; Ruan, Mei ; Qi, Shiqian ; Kim, Seong H ; Wang, Tuo ; Cosgrove, Daniel J ; Anderson, Charles T ; Xiao, Chaowen ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis ( ) , and In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.20.00252</identifier><identifier>PMID: 32883711</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BASIC BIOLOGICAL SCIENCES ; Cell Adhesion - genetics ; Cell Wall - genetics ; Cellulose - biosynthesis ; Cellulose - genetics ; Dinitrobenzenes - pharmacology ; Gene Expression Regulation, Plant ; Hypocotyl - cytology ; Hypocotyl - genetics ; Hypocotyl - growth &amp; development ; MATERIALS SCIENCE ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Microtubules - metabolism ; Mutation ; Pectins - biosynthesis ; Pectins - genetics ; Pectins - metabolism ; Plant Cells - drug effects ; Plant Cells - metabolism ; Plants, Genetically Modified ; Sulfanilamides - pharmacology ; Uronic Acids - metabolism</subject><ispartof>The Plant cell, 2020-11, Vol.32 (11), p.3576-3597</ispartof><rights>2020 American Society of Plant Biologists. All rights reserved.</rights><rights>2020 American Society of Plant Biologists. All rights reserved. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793</citedby><cites>FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793</cites><orcidid>0000-0003-4499-7474 ; 0000-0002-4020-5786 ; 0000-0001-9380-8831 ; 0000-0001-7481-3571 ; 0000-0002-7081-2392 ; 0000-0002-8575-7269 ; 0000-0003-0757-4608 ; 0000-0001-8981-8367 ; 0000-0002-9087-4283 ; 0000-0002-7589-8877 ; 0000-0002-0291-0062 ; 0000-0002-1903-5356 ; 0000-0002-1801-924X ; 0000-0003-3297-4136 ; 0000-0001-8232-4284 ; 0000000344997474 ; 0000000189818367 ; 0000000202910062 ; 0000000193808831 ; 0000000290874283 ; 0000000275898877 ; 0000000270812392 ; 0000000332974136 ; 0000000240205786 ; 0000000307574608 ; 0000000182324284 ; 0000000219035356 ; 000000021801924X ; 0000000174813571 ; 0000000285757269</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32883711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1657865$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Kirui, Alex</creatorcontrib><creatorcontrib>Huang, Shixin</creatorcontrib><creatorcontrib>Wang, Lianglei</creatorcontrib><creatorcontrib>Barnes, William J</creatorcontrib><creatorcontrib>Kiemle, Sarah N</creatorcontrib><creatorcontrib>Zheng, Yunzhen</creatorcontrib><creatorcontrib>Rui, Yue</creatorcontrib><creatorcontrib>Ruan, Mei</creatorcontrib><creatorcontrib>Qi, Shiqian</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Tuo</creatorcontrib><creatorcontrib>Cosgrove, Daniel J</creatorcontrib><creatorcontrib>Anderson, Charles T</creatorcontrib><creatorcontrib>Xiao, Chaowen</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis ( ) , and In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.</description><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Wall - genetics</subject><subject>Cellulose - biosynthesis</subject><subject>Cellulose - genetics</subject><subject>Dinitrobenzenes - pharmacology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hypocotyl - cytology</subject><subject>Hypocotyl - genetics</subject><subject>Hypocotyl - growth &amp; development</subject><subject>MATERIALS SCIENCE</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Microtubules - metabolism</subject><subject>Mutation</subject><subject>Pectins - biosynthesis</subject><subject>Pectins - genetics</subject><subject>Pectins - metabolism</subject><subject>Plant Cells - drug effects</subject><subject>Plant Cells - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Sulfanilamides - pharmacology</subject><subject>Uronic Acids - metabolism</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc9rFDEUx4NYbK3ePMvgyYOzJplJMrkI6_qjC11W0aK3kHmT6UayyTbJKPvfm3XbUiGQwPvwyXvvi9ALgmeEYPY272BG8QxjyugjdEZYQ2squ5-Pyxu3uG45I6foaUq_MMZEEPkEnTa06xpByBn6s5qyzjb4VFlf5Y2pvhjI5bkyebN3OWqfRhN1MtXXq_m35Wr9YU2rpR_dZDyYamGcm1wo5fc2pL0vhmRTpf1Q_dDOFTKb62jz_qCfR93bIewK8QydjNol8_z2PkdXnz5-X1zUl-vPy8X8soZWiFxLOIxVjpCEcRhgkCPlWvY9iE7LQQAx_chHiUnTtI0GAqzTREPPuRZCNufo3dG7m_qtGcD4MpJTu2i3Ou5V0Fb9X_F2o67DbyU4wVTSInh1FISUrUpgs4ENBO_LmhThTHScFej17S8x3EwmZbW1CcpqtDdhSoq2LW4FK8KCvjmiEENK0Yz3vRCsDoGqEqiiWP0LtOAvH_Z_D98l2PwFeuWeIw</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Du, Juan</creator><creator>Kirui, Alex</creator><creator>Huang, Shixin</creator><creator>Wang, Lianglei</creator><creator>Barnes, William J</creator><creator>Kiemle, Sarah N</creator><creator>Zheng, Yunzhen</creator><creator>Rui, Yue</creator><creator>Ruan, Mei</creator><creator>Qi, Shiqian</creator><creator>Kim, Seong H</creator><creator>Wang, Tuo</creator><creator>Cosgrove, Daniel J</creator><creator>Anderson, Charles T</creator><creator>Xiao, Chaowen</creator><general>Oxford University Press</general><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4499-7474</orcidid><orcidid>https://orcid.org/0000-0002-4020-5786</orcidid><orcidid>https://orcid.org/0000-0001-9380-8831</orcidid><orcidid>https://orcid.org/0000-0001-7481-3571</orcidid><orcidid>https://orcid.org/0000-0002-7081-2392</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0003-0757-4608</orcidid><orcidid>https://orcid.org/0000-0001-8981-8367</orcidid><orcidid>https://orcid.org/0000-0002-9087-4283</orcidid><orcidid>https://orcid.org/0000-0002-7589-8877</orcidid><orcidid>https://orcid.org/0000-0002-0291-0062</orcidid><orcidid>https://orcid.org/0000-0002-1903-5356</orcidid><orcidid>https://orcid.org/0000-0002-1801-924X</orcidid><orcidid>https://orcid.org/0000-0003-3297-4136</orcidid><orcidid>https://orcid.org/0000-0001-8232-4284</orcidid><orcidid>https://orcid.org/0000000344997474</orcidid><orcidid>https://orcid.org/0000000189818367</orcidid><orcidid>https://orcid.org/0000000202910062</orcidid><orcidid>https://orcid.org/0000000193808831</orcidid><orcidid>https://orcid.org/0000000290874283</orcidid><orcidid>https://orcid.org/0000000275898877</orcidid><orcidid>https://orcid.org/0000000270812392</orcidid><orcidid>https://orcid.org/0000000332974136</orcidid><orcidid>https://orcid.org/0000000240205786</orcidid><orcidid>https://orcid.org/0000000307574608</orcidid><orcidid>https://orcid.org/0000000182324284</orcidid><orcidid>https://orcid.org/0000000219035356</orcidid><orcidid>https://orcid.org/000000021801924X</orcidid><orcidid>https://orcid.org/0000000174813571</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid></search><sort><creationdate>20201101</creationdate><title>Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis</title><author>Du, Juan ; Kirui, Alex ; Huang, Shixin ; Wang, Lianglei ; Barnes, William J ; Kiemle, Sarah N ; Zheng, Yunzhen ; Rui, Yue ; Ruan, Mei ; Qi, Shiqian ; Kim, Seong H ; Wang, Tuo ; Cosgrove, Daniel J ; Anderson, Charles T ; Xiao, Chaowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Wall - genetics</topic><topic>Cellulose - biosynthesis</topic><topic>Cellulose - genetics</topic><topic>Dinitrobenzenes - pharmacology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hypocotyl - cytology</topic><topic>Hypocotyl - genetics</topic><topic>Hypocotyl - growth &amp; development</topic><topic>MATERIALS SCIENCE</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Microtubules - metabolism</topic><topic>Mutation</topic><topic>Pectins - biosynthesis</topic><topic>Pectins - genetics</topic><topic>Pectins - metabolism</topic><topic>Plant Cells - drug effects</topic><topic>Plant Cells - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Sulfanilamides - pharmacology</topic><topic>Uronic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Kirui, Alex</creatorcontrib><creatorcontrib>Huang, Shixin</creatorcontrib><creatorcontrib>Wang, Lianglei</creatorcontrib><creatorcontrib>Barnes, William J</creatorcontrib><creatorcontrib>Kiemle, Sarah N</creatorcontrib><creatorcontrib>Zheng, Yunzhen</creatorcontrib><creatorcontrib>Rui, Yue</creatorcontrib><creatorcontrib>Ruan, Mei</creatorcontrib><creatorcontrib>Qi, Shiqian</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><creatorcontrib>Wang, Tuo</creatorcontrib><creatorcontrib>Cosgrove, Daniel J</creatorcontrib><creatorcontrib>Anderson, Charles T</creatorcontrib><creatorcontrib>Xiao, Chaowen</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Juan</au><au>Kirui, Alex</au><au>Huang, Shixin</au><au>Wang, Lianglei</au><au>Barnes, William J</au><au>Kiemle, Sarah N</au><au>Zheng, Yunzhen</au><au>Rui, Yue</au><au>Ruan, Mei</au><au>Qi, Shiqian</au><au>Kim, Seong H</au><au>Wang, Tuo</au><au>Cosgrove, Daniel J</au><au>Anderson, Charles T</au><au>Xiao, Chaowen</au><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><spage>3576</spage><epage>3597</epage><pages>3576-3597</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>China Postdoctoral Science Foundation</notes><notes>SC0001090</notes><notes>USDOE Office of Science (SC), Basic Energy Sciences (BES)</notes><notes>Central Universities</notes><notes>Current address: Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.</notes><notes>Current address: Science Center, Mount Holyoke College, South Hadley, Massachusetts 01075.</notes><notes>www.plantcell.org/cgi/doi/10.1105/tpc.20.00252</notes><notes>Current address: Department of Biology, Stanford University, Stanford, California 94305.</notes><notes>The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Charles T. Anderson (cta3@psu.edu) and Chaowen Xiao (cwxiao@scu.edu.cn).</notes><abstract>Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis ( ) , and In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32883711</pmid><doi>10.1105/tpc.20.00252</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4499-7474</orcidid><orcidid>https://orcid.org/0000-0002-4020-5786</orcidid><orcidid>https://orcid.org/0000-0001-9380-8831</orcidid><orcidid>https://orcid.org/0000-0001-7481-3571</orcidid><orcidid>https://orcid.org/0000-0002-7081-2392</orcidid><orcidid>https://orcid.org/0000-0002-8575-7269</orcidid><orcidid>https://orcid.org/0000-0003-0757-4608</orcidid><orcidid>https://orcid.org/0000-0001-8981-8367</orcidid><orcidid>https://orcid.org/0000-0002-9087-4283</orcidid><orcidid>https://orcid.org/0000-0002-7589-8877</orcidid><orcidid>https://orcid.org/0000-0002-0291-0062</orcidid><orcidid>https://orcid.org/0000-0002-1903-5356</orcidid><orcidid>https://orcid.org/0000-0002-1801-924X</orcidid><orcidid>https://orcid.org/0000-0003-3297-4136</orcidid><orcidid>https://orcid.org/0000-0001-8232-4284</orcidid><orcidid>https://orcid.org/0000000344997474</orcidid><orcidid>https://orcid.org/0000000189818367</orcidid><orcidid>https://orcid.org/0000000202910062</orcidid><orcidid>https://orcid.org/0000000193808831</orcidid><orcidid>https://orcid.org/0000000290874283</orcidid><orcidid>https://orcid.org/0000000275898877</orcidid><orcidid>https://orcid.org/0000000270812392</orcidid><orcidid>https://orcid.org/0000000332974136</orcidid><orcidid>https://orcid.org/0000000240205786</orcidid><orcidid>https://orcid.org/0000000307574608</orcidid><orcidid>https://orcid.org/0000000182324284</orcidid><orcidid>https://orcid.org/0000000219035356</orcidid><orcidid>https://orcid.org/000000021801924X</orcidid><orcidid>https://orcid.org/0000000174813571</orcidid><orcidid>https://orcid.org/0000000285757269</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2020-11, Vol.32 (11), p.3576-3597
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610292
source Oxford Academic Journals (OUP)
subjects Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
BASIC BIOLOGICAL SCIENCES
Cell Adhesion - genetics
Cell Wall - genetics
Cellulose - biosynthesis
Cellulose - genetics
Dinitrobenzenes - pharmacology
Gene Expression Regulation, Plant
Hypocotyl - cytology
Hypocotyl - genetics
Hypocotyl - growth & development
MATERIALS SCIENCE
Methyltransferases - genetics
Methyltransferases - metabolism
Microtubules - metabolism
Mutation
Pectins - biosynthesis
Pectins - genetics
Pectins - metabolism
Plant Cells - drug effects
Plant Cells - metabolism
Plants, Genetically Modified
Sulfanilamides - pharmacology
Uronic Acids - metabolism
title Mutations in the Pectin Methyltransferase QUASIMODO2 Influence Cellulose Biosynthesis and Wall Integrity in Arabidopsis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T10%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20the%20Pectin%20Methyltransferase%20QUASIMODO2%20Influence%20Cellulose%20Biosynthesis%20and%20Wall%20Integrity%20in%20Arabidopsis&rft.jtitle=The%20Plant%20cell&rft.au=Du,%20Juan&rft.aucorp=Pennsylvania%20State%20Univ.,%20University%20Park,%20PA%20(United%20States)&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.spage=3576&rft.epage=3597&rft.pages=3576-3597&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.20.00252&rft_dat=%3Cproquest_pubme%3E2440475029%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-9c025225279156cdcd9f26a9bbc78a9d7c1ebf6f9013343ac1c58a1acb66a7793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2440475029&rft_id=info:pmid/32883711&rfr_iscdi=true