Loading…

Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays

The SARS‐CoV‐2 main protease (Mpro) cleaves along the two viral polypeptides to release non‐structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease. Here, we used native mass spectrometry to characterize the func...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2020-12, Vol.59 (52), p.23544-23548
Main Authors: El‐Baba, Tarick J., Lutomski, Corinne A., Kantsadi, Anastassia L., Malla, Tika R., John, Tobias, Mikhailov, Victor, Bolla, Jani R., Schofield, Christopher J., Zitzmann, Nicole, Vakonakis, Ioannis, Robinson, Carol V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633
cites cdi_FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633
container_end_page 23548
container_issue 52
container_start_page 23544
container_title Angewandte Chemie International Edition
container_volume 59
creator El‐Baba, Tarick J.
Lutomski, Corinne A.
Kantsadi, Anastassia L.
Malla, Tika R.
John, Tobias
Mikhailov, Victor
Bolla, Jani R.
Schofield, Christopher J.
Zitzmann, Nicole
Vakonakis, Ioannis
Robinson, Carol V.
description The SARS‐CoV‐2 main protease (Mpro) cleaves along the two viral polypeptides to release non‐structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro. Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd=0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme‐substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x‐ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity. The SARS‐CoV‐2 main protease monomer/dimer equilibrium was characterized using native mass spectrometry. An MS‐based kinetic assay that quantifies the changes in the amounts of enzyme–substrate complex with time was used to capture MPro protease activity. Several small molecules bind non‐covalently to MPro, do not compete for the active site, and slow the processing of the substrate, providing a means for optimizing potential antiviral compounds.
doi_str_mv 10.1002/anie.202010316
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7461284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2469844054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633</originalsourceid><addsrcrecordid>eNqFkcuO0zAUhi0EYoaBLUtkiQ2bFNvnJE5YIIVqgErDRRTYWo5jtx6lcbFTUHc8As_Ik-BRh3JZwMYXnc-fzvFPyH3OZpwx8ViP3s4EE4wz4NUNcspLwQuQEm7mMwIUsi75CbmT0mXm65pVt8kJiBo5SnlKVu0whDTZ6A1djGvf-cmHkQZHp7Wly_bd8vvXb_PwMa-CvtJ-pG9jmKxO9knmk1-tp0RdDJtcTIkut9ZM-WanuKfPMtXTNiW9T3fJLaeHZO9d72fkw_Pz9_OXxcWbF4t5e1GYEqAq0IGwuqkMh7oHaLTmZekQsWkM2E50gGXnemcQ0HQIHQoUzEl02DuoAM7I04N3u-s2tjd2nKIe1Db6jY57FbRXf1ZGv1ar8FlJrHj-lSx4dC2I4dPOpkltfDJ2GPRowy4pgSCRYV03GX34F3oZdnHM42WqampEVuK_KZAMmkpWmZodKBNDStG6Y8ucqauk1VXS6ph0fvDg90GP-M9oM9AcgC9-sPv_6FT7enH-S_4D0F22HA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437039676</pqid></control><display><type>article</type><title>Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays</title><source>Coronavirus Research Database</source><creator>El‐Baba, Tarick J. ; Lutomski, Corinne A. ; Kantsadi, Anastassia L. ; Malla, Tika R. ; John, Tobias ; Mikhailov, Victor ; Bolla, Jani R. ; Schofield, Christopher J. ; Zitzmann, Nicole ; Vakonakis, Ioannis ; Robinson, Carol V.</creator><creatorcontrib>El‐Baba, Tarick J. ; Lutomski, Corinne A. ; Kantsadi, Anastassia L. ; Malla, Tika R. ; John, Tobias ; Mikhailov, Victor ; Bolla, Jani R. ; Schofield, Christopher J. ; Zitzmann, Nicole ; Vakonakis, Ioannis ; Robinson, Carol V.</creatorcontrib><description>The SARS‐CoV‐2 main protease (Mpro) cleaves along the two viral polypeptides to release non‐structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro. Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd=0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme‐substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x‐ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity. The SARS‐CoV‐2 main protease monomer/dimer equilibrium was characterized using native mass spectrometry. An MS‐based kinetic assay that quantifies the changes in the amounts of enzyme–substrate complex with time was used to capture MPro protease activity. Several small molecules bind non‐covalently to MPro, do not compete for the active site, and slow the processing of the substrate, providing a means for optimizing potential antiviral compounds.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202010316</identifier><identifier>PMID: 32841477</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>allosteric inhibitors ; Allosteric properties ; Allosteric Regulation ; Antiviral agents ; Binding Sites ; Biological Assay ; Communication ; Communications ; Coronavirus 3C Proteases - antagonists &amp; inhibitors ; Coronavirus 3C Proteases - chemistry ; Coronavirus Protease Inhibitors - chemistry ; Coronavirus Protease Inhibitors - pharmacology ; Coronaviruses ; Crystal structure ; Crystallography, X-Ray ; Dimers ; drug development ; Information processing ; Mass Spectrometry ; Mass spectroscopy ; Models, Molecular ; native mass spectrometry ; Polypeptides ; Protease ; proteases ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Proteinase ; SARS-CoV-2 ; SARS-CoV-2 - enzymology ; SARS-CoV-2 - physiology ; Scientific imaging ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Small Molecule Libraries - chemistry ; Small Molecule Libraries - pharmacology ; Spectroscopy ; Structural proteins ; Substrate Specificity ; Substrates ; Viral diseases ; Virus Replication</subject><ispartof>Angewandte Chemie International Edition, 2020-12, Vol.59 (52), p.23544-23548</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://novel-coronavirus.onlinelibrary.wiley.com</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633</citedby><cites>FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633</cites><orcidid>0000-0001-7509-103X ; 0000-0002-4726-0446 ; 0000-0003-4497-9938 ; 0000-0001-7829-5505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202010316$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2437039676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,38551,43930,50923,51032</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2437039676/abstract/?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32841477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El‐Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Kantsadi, Anastassia L.</creatorcontrib><creatorcontrib>Malla, Tika R.</creatorcontrib><creatorcontrib>John, Tobias</creatorcontrib><creatorcontrib>Mikhailov, Victor</creatorcontrib><creatorcontrib>Bolla, Jani R.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Zitzmann, Nicole</creatorcontrib><creatorcontrib>Vakonakis, Ioannis</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><title>Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The SARS‐CoV‐2 main protease (Mpro) cleaves along the two viral polypeptides to release non‐structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro. Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd=0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme‐substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x‐ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity. The SARS‐CoV‐2 main protease monomer/dimer equilibrium was characterized using native mass spectrometry. An MS‐based kinetic assay that quantifies the changes in the amounts of enzyme–substrate complex with time was used to capture MPro protease activity. Several small molecules bind non‐covalently to MPro, do not compete for the active site, and slow the processing of the substrate, providing a means for optimizing potential antiviral compounds.</description><subject>allosteric inhibitors</subject><subject>Allosteric properties</subject><subject>Allosteric Regulation</subject><subject>Antiviral agents</subject><subject>Binding Sites</subject><subject>Biological Assay</subject><subject>Communication</subject><subject>Communications</subject><subject>Coronavirus 3C Proteases - antagonists &amp; inhibitors</subject><subject>Coronavirus 3C Proteases - chemistry</subject><subject>Coronavirus Protease Inhibitors - chemistry</subject><subject>Coronavirus Protease Inhibitors - pharmacology</subject><subject>Coronaviruses</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dimers</subject><subject>drug development</subject><subject>Information processing</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Models, Molecular</subject><subject>native mass spectrometry</subject><subject>Polypeptides</subject><subject>Protease</subject><subject>proteases</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Multimerization</subject><subject>Proteinase</subject><subject>SARS-CoV-2</subject><subject>SARS-CoV-2 - enzymology</subject><subject>SARS-CoV-2 - physiology</subject><subject>Scientific imaging</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Small Molecule Libraries - chemistry</subject><subject>Small Molecule Libraries - pharmacology</subject><subject>Spectroscopy</subject><subject>Structural proteins</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Viral diseases</subject><subject>Virus Replication</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>COVID</sourceid><recordid>eNqFkcuO0zAUhi0EYoaBLUtkiQ2bFNvnJE5YIIVqgErDRRTYWo5jtx6lcbFTUHc8As_Ik-BRh3JZwMYXnc-fzvFPyH3OZpwx8ViP3s4EE4wz4NUNcspLwQuQEm7mMwIUsi75CbmT0mXm65pVt8kJiBo5SnlKVu0whDTZ6A1djGvf-cmHkQZHp7Wly_bd8vvXb_PwMa-CvtJ-pG9jmKxO9knmk1-tp0RdDJtcTIkut9ZM-WanuKfPMtXTNiW9T3fJLaeHZO9d72fkw_Pz9_OXxcWbF4t5e1GYEqAq0IGwuqkMh7oHaLTmZekQsWkM2E50gGXnemcQ0HQIHQoUzEl02DuoAM7I04N3u-s2tjd2nKIe1Db6jY57FbRXf1ZGv1ar8FlJrHj-lSx4dC2I4dPOpkltfDJ2GPRowy4pgSCRYV03GX34F3oZdnHM42WqampEVuK_KZAMmkpWmZodKBNDStG6Y8ucqauk1VXS6ph0fvDg90GP-M9oM9AcgC9-sPv_6FT7enH-S_4D0F22HA</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>El‐Baba, Tarick J.</creator><creator>Lutomski, Corinne A.</creator><creator>Kantsadi, Anastassia L.</creator><creator>Malla, Tika R.</creator><creator>John, Tobias</creator><creator>Mikhailov, Victor</creator><creator>Bolla, Jani R.</creator><creator>Schofield, Christopher J.</creator><creator>Zitzmann, Nicole</creator><creator>Vakonakis, Ioannis</creator><creator>Robinson, Carol V.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>COVID</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-4726-0446</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid></search><sort><creationdate>20201221</creationdate><title>Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays</title><author>El‐Baba, Tarick J. ; Lutomski, Corinne A. ; Kantsadi, Anastassia L. ; Malla, Tika R. ; John, Tobias ; Mikhailov, Victor ; Bolla, Jani R. ; Schofield, Christopher J. ; Zitzmann, Nicole ; Vakonakis, Ioannis ; Robinson, Carol V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>allosteric inhibitors</topic><topic>Allosteric properties</topic><topic>Allosteric Regulation</topic><topic>Antiviral agents</topic><topic>Binding Sites</topic><topic>Biological Assay</topic><topic>Communication</topic><topic>Communications</topic><topic>Coronavirus 3C Proteases - antagonists &amp; inhibitors</topic><topic>Coronavirus 3C Proteases - chemistry</topic><topic>Coronavirus Protease Inhibitors - chemistry</topic><topic>Coronavirus Protease Inhibitors - pharmacology</topic><topic>Coronaviruses</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dimers</topic><topic>drug development</topic><topic>Information processing</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Models, Molecular</topic><topic>native mass spectrometry</topic><topic>Polypeptides</topic><topic>Protease</topic><topic>proteases</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Multimerization</topic><topic>Proteinase</topic><topic>SARS-CoV-2</topic><topic>SARS-CoV-2 - enzymology</topic><topic>SARS-CoV-2 - physiology</topic><topic>Scientific imaging</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Small Molecule Libraries - chemistry</topic><topic>Small Molecule Libraries - pharmacology</topic><topic>Spectroscopy</topic><topic>Structural proteins</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Viral diseases</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El‐Baba, Tarick J.</creatorcontrib><creatorcontrib>Lutomski, Corinne A.</creatorcontrib><creatorcontrib>Kantsadi, Anastassia L.</creatorcontrib><creatorcontrib>Malla, Tika R.</creatorcontrib><creatorcontrib>John, Tobias</creatorcontrib><creatorcontrib>Mikhailov, Victor</creatorcontrib><creatorcontrib>Bolla, Jani R.</creatorcontrib><creatorcontrib>Schofield, Christopher J.</creatorcontrib><creatorcontrib>Zitzmann, Nicole</creatorcontrib><creatorcontrib>Vakonakis, Ioannis</creatorcontrib><creatorcontrib>Robinson, Carol V.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Coronavirus Research Database</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El‐Baba, Tarick J.</au><au>Lutomski, Corinne A.</au><au>Kantsadi, Anastassia L.</au><au>Malla, Tika R.</au><au>John, Tobias</au><au>Mikhailov, Victor</au><au>Bolla, Jani R.</au><au>Schofield, Christopher J.</au><au>Zitzmann, Nicole</au><au>Vakonakis, Ioannis</au><au>Robinson, Carol V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2020-12-21</date><risdate>2020</risdate><volume>59</volume><issue>52</issue><spage>23544</spage><epage>23548</epage><pages>23544-23548</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><notes>https://doi.org/10.1101/2020.07.29.226761</notes><notes>.</notes><notes>A previous version of this manuscript has been deposited on a preprint server</notes><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>A previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.1101/2020.07.29.226761).</notes><abstract>The SARS‐CoV‐2 main protease (Mpro) cleaves along the two viral polypeptides to release non‐structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus‐2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro. Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd=0.14±0.03 μM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme‐substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x‐ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity. The SARS‐CoV‐2 main protease monomer/dimer equilibrium was characterized using native mass spectrometry. An MS‐based kinetic assay that quantifies the changes in the amounts of enzyme–substrate complex with time was used to capture MPro protease activity. Several small molecules bind non‐covalently to MPro, do not compete for the active site, and slow the processing of the substrate, providing a means for optimizing potential antiviral compounds.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32841477</pmid><doi>10.1002/anie.202010316</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-7509-103X</orcidid><orcidid>https://orcid.org/0000-0002-4726-0446</orcidid><orcidid>https://orcid.org/0000-0003-4497-9938</orcidid><orcidid>https://orcid.org/0000-0001-7829-5505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2020-12, Vol.59 (52), p.23544-23548
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7461284
source Coronavirus Research Database
subjects allosteric inhibitors
Allosteric properties
Allosteric Regulation
Antiviral agents
Binding Sites
Biological Assay
Communication
Communications
Coronavirus 3C Proteases - antagonists & inhibitors
Coronavirus 3C Proteases - chemistry
Coronavirus Protease Inhibitors - chemistry
Coronavirus Protease Inhibitors - pharmacology
Coronaviruses
Crystal structure
Crystallography, X-Ray
Dimers
drug development
Information processing
Mass Spectrometry
Mass spectroscopy
Models, Molecular
native mass spectrometry
Polypeptides
Protease
proteases
Protein Binding
Protein Conformation
Protein Multimerization
Proteinase
SARS-CoV-2
SARS-CoV-2 - enzymology
SARS-CoV-2 - physiology
Scientific imaging
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Spectroscopy
Structural proteins
Substrate Specificity
Substrates
Viral diseases
Virus Replication
title Allosteric Inhibition of the SARS‐CoV‐2 Main Protease: Insights from Mass Spectrometry Based Assays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T16%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allosteric%20Inhibition%20of%20the%20SARS%E2%80%90CoV%E2%80%902%20Main%20Protease:%20Insights%20from%20Mass%20Spectrometry%20Based%20Assays&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=El%E2%80%90Baba,%20Tarick%20J.&rft.date=2020-12-21&rft.volume=59&rft.issue=52&rft.spage=23544&rft.epage=23548&rft.pages=23544-23548&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202010316&rft_dat=%3Cproquest_COVID%3E2469844054%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5336-4f32ea96c138d339aa155f44499c3eb2b345bfdfc434cb43b42420f74f4df3633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437039676&rft_id=info:pmid/32841477&rfr_iscdi=true