Loading…

Resilience to Injury: A New Approach to Neuroprotection?

Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating...

Full description

Saved in:
Bibliographic Details
Published in:Neurotherapeutics 2020-04, Vol.17 (2), p.457-474
Main Authors: Singhal, Neel S., Sun, Chung-Huan, Lee, Evan M., Ma, Dengke K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03
cites cdi_FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03
container_end_page 474
container_issue 2
container_start_page 457
container_title Neurotherapeutics
container_volume 17
creator Singhal, Neel S.
Sun, Chung-Huan
Lee, Evan M.
Ma, Dengke K.
description Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating “neurological resilience” in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients’ physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.
doi_str_mv 10.1007/s13311-020-00832-7
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7283435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348795938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03</originalsourceid><addsrcrecordid>eNp9kctOHDEQRa0IFB7JD2SBWmKTTYPLZWM7i6DRiJeEiBQla8vjqYYe9bQndjcRf49hCBAWrMqle-qWS5exL8APgHN9mAERoOaC15wbFLX-wLbBaFNrqe1GeVvEWgvALbaT84JzhWjNR7aFYK0WR2abmZ-U266lPlA1xOqiX4zp7ls1qa7obzVZrVL04eZBuaIxxdIOFIY29sef2Gbju0yfn-ou-3168mt6Xl_-OLuYTi7rILUc6gBqrhrkWpo5AYZg0QeSpIRBS0opo2mGxL1vTKO80CBmZGeeoyli4LjLvq99V-NsSfNA_ZB851apXfp056Jv3f9K396463jrdNkgURWDr08GKf4ZKQ9u2eZAXed7imN2AqXRVlk0Bd1_gy7imPpynhMSgCsACYUSayqkmHOi5vkzwN1DMG4djCvBuMdgnC5De6_PeB75l0QBcA3kIvXXlF52v2N7D1-_mCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2411051141</pqid></control><display><type>article</type><title>Resilience to Injury: A New Approach to Neuroprotection?</title><source>Springer Link</source><source>PubMed Central</source><creator>Singhal, Neel S. ; Sun, Chung-Huan ; Lee, Evan M. ; Ma, Dengke K.</creator><creatorcontrib>Singhal, Neel S. ; Sun, Chung-Huan ; Lee, Evan M. ; Ma, Dengke K.</creatorcontrib><description>Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating “neurological resilience” in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients’ physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-020-00832-7</identifier><identifier>PMID: 31997268</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Adaptation ; Adaptation, Physiological ; Animal models ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain Diseases ; Clinical trials ; Humans ; Neurobiology ; Neurology ; Neuroprotection ; Neurosciences ; Neurosurgery ; Patients ; Review ; Traumatic brain injury</subject><ispartof>Neurotherapeutics, 2020-04, Vol.17 (2), p.457-474</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2020</rights><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03</citedby><cites>FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03</cites><orcidid>0000-0003-1605-4444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283435/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283435/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31997268$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singhal, Neel S.</creatorcontrib><creatorcontrib>Sun, Chung-Huan</creatorcontrib><creatorcontrib>Lee, Evan M.</creatorcontrib><creatorcontrib>Ma, Dengke K.</creatorcontrib><title>Resilience to Injury: A New Approach to Neuroprotection?</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating “neurological resilience” in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients’ physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Animal models</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Diseases</subject><subject>Clinical trials</subject><subject>Humans</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Patients</subject><subject>Review</subject><subject>Traumatic brain injury</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kctOHDEQRa0IFB7JD2SBWmKTTYPLZWM7i6DRiJeEiBQla8vjqYYe9bQndjcRf49hCBAWrMqle-qWS5exL8APgHN9mAERoOaC15wbFLX-wLbBaFNrqe1GeVvEWgvALbaT84JzhWjNR7aFYK0WR2abmZ-U266lPlA1xOqiX4zp7ls1qa7obzVZrVL04eZBuaIxxdIOFIY29sef2Gbju0yfn-ou-3168mt6Xl_-OLuYTi7rILUc6gBqrhrkWpo5AYZg0QeSpIRBS0opo2mGxL1vTKO80CBmZGeeoyli4LjLvq99V-NsSfNA_ZB851apXfp056Jv3f9K396463jrdNkgURWDr08GKf4ZKQ9u2eZAXed7imN2AqXRVlk0Bd1_gy7imPpynhMSgCsACYUSayqkmHOi5vkzwN1DMG4djCvBuMdgnC5De6_PeB75l0QBcA3kIvXXlF52v2N7D1-_mCY</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Singhal, Neel S.</creator><creator>Sun, Chung-Huan</creator><creator>Lee, Evan M.</creator><creator>Ma, Dengke K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1605-4444</orcidid></search><sort><creationdate>20200401</creationdate><title>Resilience to Injury: A New Approach to Neuroprotection?</title><author>Singhal, Neel S. ; Sun, Chung-Huan ; Lee, Evan M. ; Ma, Dengke K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Animal models</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Diseases</topic><topic>Clinical trials</topic><topic>Humans</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Patients</topic><topic>Review</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singhal, Neel S.</creatorcontrib><creatorcontrib>Sun, Chung-Huan</creatorcontrib><creatorcontrib>Lee, Evan M.</creatorcontrib><creatorcontrib>Ma, Dengke K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singhal, Neel S.</au><au>Sun, Chung-Huan</au><au>Lee, Evan M.</au><au>Ma, Dengke K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilience to Injury: A New Approach to Neuroprotection?</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>17</volume><issue>2</issue><spage>457</spage><epage>474</epage><pages>457-474</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-3</notes><notes>content type line 23</notes><notes>ObjectType-Review-1</notes><abstract>Despite thousands of neuroprotectants demonstrating promise in preclinical trials, a neuroprotective therapeutic has yet to be approved for the treatment of acute brain injuries such as stroke or traumatic brain injury. Developing a more detailed understanding of models and populations demonstrating “neurological resilience” in spite of brain injury can give us important insights into new translational therapies. Resilience is the process of active adaptation to a stressor. In the context of neuroprotection, models of preconditioning and unique animal models of extreme physiology (such as hibernating species) reliably demonstrate resilience in the laboratory setting. In the clinical setting, resilience is observed in young patients and can be found in those with specific genetic polymorphisms. These important examples of resilience can help transform and extend the current neuroprotective framework from simply countering the injurious cascade into one that anticipates, monitors, and optimizes patients’ physiological responses from the time of injury throughout the process of recovery. This review summarizes the underpinnings of key adaptations common to models of resilience and how this understanding can be applied to new neuroprotective approaches.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>31997268</pmid><doi>10.1007/s13311-020-00832-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1605-4444</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-7213
ispartof Neurotherapeutics, 2020-04, Vol.17 (2), p.457-474
issn 1933-7213
1878-7479
1878-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7283435
source Springer Link; PubMed Central
subjects Adaptation
Adaptation, Physiological
Animal models
Animals
Biomedical and Life Sciences
Biomedicine
Brain Diseases
Clinical trials
Humans
Neurobiology
Neurology
Neuroprotection
Neurosciences
Neurosurgery
Patients
Review
Traumatic brain injury
title Resilience to Injury: A New Approach to Neuroprotection?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-23T00%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilience%20to%20Injury:%20A%20New%20Approach%20to%20Neuroprotection?&rft.jtitle=Neurotherapeutics&rft.au=Singhal,%20Neel%20S.&rft.date=2020-04-01&rft.volume=17&rft.issue=2&rft.spage=457&rft.epage=474&rft.pages=457-474&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-020-00832-7&rft_dat=%3Cproquest_pubme%3E2348795938%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-c15d5f30748de13cc93ace4e52839e55587eb3e0aaf8f5a2712be9ba038555c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2411051141&rft_id=info:pmid/31997268&rfr_iscdi=true