Loading…

Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins

Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes s...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2019-07, Vol.47 (13), p.7130-7142
Main Authors: Vanmeert, Michiel, Razzokov, Jamoliddin, Mirza, Muhammad Usman, Weeks, Stephen D, Schepers, Guy, Bogaerts, Annemie, Rozenski, Jef, Froeyen, Mathy, Herdewijn, Piet, Pinheiro, Vitor B, Lescrinier, Eveline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03
cites cdi_FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03
container_end_page 7142
container_issue 13
container_start_page 7130
container_title Nucleic acids research
container_volume 47
creator Vanmeert, Michiel
Razzokov, Jamoliddin
Mirza, Muhammad Usman
Weeks, Stephen D
Schepers, Guy
Bogaerts, Annemie
Rozenski, Jef
Froeyen, Mathy
Herdewijn, Piet
Pinheiro, Vitor B
Lescrinier, Eveline
description Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.
doi_str_mv 10.1093/nar/gkz551
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6649754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31334814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMoth5ufADJtbA22WSz3RtBxBMUBVHwyjA57DZ2m5RkV9Cnd0u1KAzMwPzzDXwInVByTknFJh7ipFl8FQXdQWPKRJ7xSuS7aEwYKTJK-HSEDlJ6J4RyWvB9NGKUMT6lfIzenqBzwUOLjU2u8TjUGDx-fbjErWsgWdzNY-ibOTZBL5xv1oHeq9B7g32vW-s0Bu1Mwl0YKgZnBtgqhs46n47QXg1tssc__RC93Fw_X91ls8fb-6vLWaY5511WcWWFIFNlQFmgjOeltkUpairqUmihK1B1XrGSgKAllErUJLcUuFFKDzM7RBcb7qpXS2u09V2EVq6iW0L8lAGc_L_xbi6b8CGF4FVZ8AFwtgHoGFKKtt7eUiLXluVgWW4sD-HTv9-20V-t7BsvDXxa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins</title><source>PubMed Central (Open access)</source><source>Oxford Journals Online</source><creator>Vanmeert, Michiel ; Razzokov, Jamoliddin ; Mirza, Muhammad Usman ; Weeks, Stephen D ; Schepers, Guy ; Bogaerts, Annemie ; Rozenski, Jef ; Froeyen, Mathy ; Herdewijn, Piet ; Pinheiro, Vitor B ; Lescrinier, Eveline</creator><creatorcontrib>Vanmeert, Michiel ; Razzokov, Jamoliddin ; Mirza, Muhammad Usman ; Weeks, Stephen D ; Schepers, Guy ; Bogaerts, Annemie ; Rozenski, Jef ; Froeyen, Mathy ; Herdewijn, Piet ; Pinheiro, Vitor B ; Lescrinier, Eveline</creatorcontrib><description>Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkz551</identifier><identifier>PMID: 31334814</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computer Simulation ; Deoxyribonuclease BamHI - metabolism ; DNA Ligases - chemistry ; DNA Ligases - metabolism ; DNA Viruses - enzymology ; DNA, Viral - metabolism ; Models, Chemical ; Molecular Docking Simulation ; Mutagenesis, Site-Directed ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Structure-Activity Relationship ; Substrate Specificity ; Synthetic Biology and Bioengineering ; Templates, Genetic ; Viral Proteins - chemistry ; Viral Proteins - metabolism</subject><ispartof>Nucleic acids research, 2019-07, Vol.47 (13), p.7130-7142</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03</citedby><cites>FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6649754/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31334814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanmeert, Michiel</creatorcontrib><creatorcontrib>Razzokov, Jamoliddin</creatorcontrib><creatorcontrib>Mirza, Muhammad Usman</creatorcontrib><creatorcontrib>Weeks, Stephen D</creatorcontrib><creatorcontrib>Schepers, Guy</creatorcontrib><creatorcontrib>Bogaerts, Annemie</creatorcontrib><creatorcontrib>Rozenski, Jef</creatorcontrib><creatorcontrib>Froeyen, Mathy</creatorcontrib><creatorcontrib>Herdewijn, Piet</creatorcontrib><creatorcontrib>Pinheiro, Vitor B</creatorcontrib><creatorcontrib>Lescrinier, Eveline</creatorcontrib><title>Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.</description><subject>Computer Simulation</subject><subject>Deoxyribonuclease BamHI - metabolism</subject><subject>DNA Ligases - chemistry</subject><subject>DNA Ligases - metabolism</subject><subject>DNA Viruses - enzymology</subject><subject>DNA, Viral - metabolism</subject><subject>Models, Chemical</subject><subject>Molecular Docking Simulation</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Structure-Activity Relationship</subject><subject>Substrate Specificity</subject><subject>Synthetic Biology and Bioengineering</subject><subject>Templates, Genetic</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkNtKAzEQhoMoth5ufADJtbA22WSz3RtBxBMUBVHwyjA57DZ2m5RkV9Cnd0u1KAzMwPzzDXwInVByTknFJh7ipFl8FQXdQWPKRJ7xSuS7aEwYKTJK-HSEDlJ6J4RyWvB9NGKUMT6lfIzenqBzwUOLjU2u8TjUGDx-fbjErWsgWdzNY-ibOTZBL5xv1oHeq9B7g32vW-s0Bu1Mwl0YKgZnBtgqhs46n47QXg1tssc__RC93Fw_X91ls8fb-6vLWaY5511WcWWFIFNlQFmgjOeltkUpairqUmihK1B1XrGSgKAllErUJLcUuFFKDzM7RBcb7qpXS2u09V2EVq6iW0L8lAGc_L_xbi6b8CGF4FVZ8AFwtgHoGFKKtt7eUiLXluVgWW4sD-HTv9-20V-t7BsvDXxa</recordid><startdate>20190726</startdate><enddate>20190726</enddate><creator>Vanmeert, Michiel</creator><creator>Razzokov, Jamoliddin</creator><creator>Mirza, Muhammad Usman</creator><creator>Weeks, Stephen D</creator><creator>Schepers, Guy</creator><creator>Bogaerts, Annemie</creator><creator>Rozenski, Jef</creator><creator>Froeyen, Mathy</creator><creator>Herdewijn, Piet</creator><creator>Pinheiro, Vitor B</creator><creator>Lescrinier, Eveline</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20190726</creationdate><title>Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins</title><author>Vanmeert, Michiel ; Razzokov, Jamoliddin ; Mirza, Muhammad Usman ; Weeks, Stephen D ; Schepers, Guy ; Bogaerts, Annemie ; Rozenski, Jef ; Froeyen, Mathy ; Herdewijn, Piet ; Pinheiro, Vitor B ; Lescrinier, Eveline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Simulation</topic><topic>Deoxyribonuclease BamHI - metabolism</topic><topic>DNA Ligases - chemistry</topic><topic>DNA Ligases - metabolism</topic><topic>DNA Viruses - enzymology</topic><topic>DNA, Viral - metabolism</topic><topic>Models, Chemical</topic><topic>Molecular Docking Simulation</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Structure-Activity Relationship</topic><topic>Substrate Specificity</topic><topic>Synthetic Biology and Bioengineering</topic><topic>Templates, Genetic</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanmeert, Michiel</creatorcontrib><creatorcontrib>Razzokov, Jamoliddin</creatorcontrib><creatorcontrib>Mirza, Muhammad Usman</creatorcontrib><creatorcontrib>Weeks, Stephen D</creatorcontrib><creatorcontrib>Schepers, Guy</creatorcontrib><creatorcontrib>Bogaerts, Annemie</creatorcontrib><creatorcontrib>Rozenski, Jef</creatorcontrib><creatorcontrib>Froeyen, Mathy</creatorcontrib><creatorcontrib>Herdewijn, Piet</creatorcontrib><creatorcontrib>Pinheiro, Vitor B</creatorcontrib><creatorcontrib>Lescrinier, Eveline</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanmeert, Michiel</au><au>Razzokov, Jamoliddin</au><au>Mirza, Muhammad Usman</au><au>Weeks, Stephen D</au><au>Schepers, Guy</au><au>Bogaerts, Annemie</au><au>Rozenski, Jef</au><au>Froeyen, Mathy</au><au>Herdewijn, Piet</au><au>Pinheiro, Vitor B</au><au>Lescrinier, Eveline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2019-07-26</date><risdate>2019</risdate><volume>47</volume><issue>13</issue><spage>7130</spage><epage>7142</epage><pages>7130-7142</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31334814</pmid><doi>10.1093/nar/gkz551</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2019-07, Vol.47 (13), p.7130-7142
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6649754
source PubMed Central (Open access); Oxford Journals Online
subjects Computer Simulation
Deoxyribonuclease BamHI - metabolism
DNA Ligases - chemistry
DNA Ligases - metabolism
DNA Viruses - enzymology
DNA, Viral - metabolism
Models, Chemical
Molecular Docking Simulation
Mutagenesis, Site-Directed
Nucleic Acid Conformation
Protein Binding
Protein Conformation
Structure-Activity Relationship
Substrate Specificity
Synthetic Biology and Bioengineering
Templates, Genetic
Viral Proteins - chemistry
Viral Proteins - metabolism
title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T19%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20an%20XNA%20ligase%20through%20docking%20of%20unbound%20nucleic%20acids%20to%20toroidal%20proteins&rft.jtitle=Nucleic%20acids%20research&rft.au=Vanmeert,%20Michiel&rft.date=2019-07-26&rft.volume=47&rft.issue=13&rft.spage=7130&rft.epage=7142&rft.pages=7130-7142&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkz551&rft_dat=%3Cpubmed_cross%3E31334814%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-94be6608bdabea13427ce576f16f76c6c9abf29370a617a7b6f02e1a4dbbc6f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31334814&rfr_iscdi=true