Loading…

Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq

CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and veri...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2019-04, Vol.364 (6437), p.286-289
Main Authors: Wienert, Beeke, Wyman, Stacia K, Richardson, Christopher D, Yeh, Charles D, Akcakaya, Pinar, Porritt, Michelle J, Morlock, Michaela, Vu, Jonathan T, Kazane, Katelynn R, Watry, Hannah L, Judge, Luke M, Conklin, Bruce R, Maresca, Marcello, Corn, Jacob E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923
cites cdi_FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923
container_end_page 289
container_issue 6437
container_start_page 286
container_title Science (American Association for the Advancement of Science)
container_volume 364
creator Wienert, Beeke
Wyman, Stacia K
Richardson, Christopher D
Yeh, Charles D
Akcakaya, Pinar
Porritt, Michelle J
Morlock, Michaela
Vu, Jonathan T
Kazane, Katelynn R
Watry, Hannah L
Judge, Luke M
Conklin, Bruce R
Maresca, Marcello
Corn, Jacob E
description CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.
doi_str_mv 10.1126/science.aav9023
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2211359577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923</originalsourceid><addsrcrecordid>eNpdkUFP4zAQhS3ECkqXMzcUiQuXwDiOnfiChEKBSkisWsrVcpxJMWptiJNK_Hu8S6l29zCakeabp3l6hJxQuKA0E5fBWHQGL7TeSMjYHhlRkDyVGbB9MgJgIi2h4IfkKIRXgLiT7IAcMhpnIdiIVAtXWx2wSRrs0fTWu8S3STWbzn_N4tSmve6W2IfEumRjNz4ZgnXL5GY6rx6fJ7N0ju8_yY9WrwIeb_uYLG4nT9V9-vB4N62uH1LDC-hT2tSAjEspeW7KvNUSRFNzLESRFxrKptSQ123dcqZNiQYZoxnQggqOmZAZG5OrL923oV5jY9D1nV6pt86udfehvLbq342zL2rpN0rwUoIUUeB8K9D59wFDr9Y2GFyttEM_BJVllMqciVhjcvYf-uqHzkV7f6hogxdFpC6_KNP5EDpsd89QUL8DUtuA1DageHH6t4cd_50I-wRhDYy3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211359577</pqid></control><display><type>article</type><title>Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq</title><source>American Association for the Advancement of Science</source><creator>Wienert, Beeke ; Wyman, Stacia K ; Richardson, Christopher D ; Yeh, Charles D ; Akcakaya, Pinar ; Porritt, Michelle J ; Morlock, Michaela ; Vu, Jonathan T ; Kazane, Katelynn R ; Watry, Hannah L ; Judge, Luke M ; Conklin, Bruce R ; Maresca, Marcello ; Corn, Jacob E</creator><creatorcontrib>Wienert, Beeke ; Wyman, Stacia K ; Richardson, Christopher D ; Yeh, Charles D ; Akcakaya, Pinar ; Porritt, Michelle J ; Morlock, Michaela ; Vu, Jonathan T ; Kazane, Katelynn R ; Watry, Hannah L ; Judge, Luke M ; Conklin, Bruce R ; Maresca, Marcello ; Corn, Jacob E</creatorcontrib><description>CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aav9023</identifier><identifier>PMID: 31000663</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adenoviridae ; Animals ; Cell Line ; Cell lines ; Change detection ; Chromatin Immunoprecipitation ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; CRISPR-Associated Protein 9 - chemistry ; CRISPR-Associated Protein 9 - metabolism ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - genetics ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA Repair Enzymes - metabolism ; Editing ; Embryos ; Gene Editing - methods ; Gene sequencing ; Genetic modification ; Genome editing ; Genomes ; Genotypes ; Heterogeneity ; Humans ; In vivo methods and tests ; Induced Pluripotent Stem Cells ; K562 Cells ; MRE11 Homologue Protein - genetics ; MRE11 Homologue Protein - metabolism ; MRE11 protein ; Mutation ; Pluripotency ; Proteins ; Recruitment ; Repair ; Ribonucleic acid ; RNA ; RNA, Guide, CRISPR-Cas Systems ; Sequence Analysis, DNA - methods ; Stem cell transplantation ; Stem cells ; Target detection ; Target recognition</subject><ispartof>Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.286-289</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923</citedby><cites>FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923</cites><orcidid>0000-0002-2707-6035 ; 0000-0002-5843-9214 ; 0000-0002-4950-7967 ; 0000-0003-3122-4851 ; 0000-0002-7798-5309 ; 0000-0003-1700-0085 ; 0000-0002-8937-8397 ; 0000-0003-3782-5666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,2902,2903,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31000663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wienert, Beeke</creatorcontrib><creatorcontrib>Wyman, Stacia K</creatorcontrib><creatorcontrib>Richardson, Christopher D</creatorcontrib><creatorcontrib>Yeh, Charles D</creatorcontrib><creatorcontrib>Akcakaya, Pinar</creatorcontrib><creatorcontrib>Porritt, Michelle J</creatorcontrib><creatorcontrib>Morlock, Michaela</creatorcontrib><creatorcontrib>Vu, Jonathan T</creatorcontrib><creatorcontrib>Kazane, Katelynn R</creatorcontrib><creatorcontrib>Watry, Hannah L</creatorcontrib><creatorcontrib>Judge, Luke M</creatorcontrib><creatorcontrib>Conklin, Bruce R</creatorcontrib><creatorcontrib>Maresca, Marcello</creatorcontrib><creatorcontrib>Corn, Jacob E</creatorcontrib><title>Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.</description><subject>Adenoviridae</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Change detection</subject><subject>Chromatin Immunoprecipitation</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>CRISPR-Associated Protein 9 - chemistry</subject><subject>CRISPR-Associated Protein 9 - metabolism</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>Editing</subject><subject>Embryos</subject><subject>Gene Editing - methods</subject><subject>Gene sequencing</subject><subject>Genetic modification</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>Induced Pluripotent Stem Cells</subject><subject>K562 Cells</subject><subject>MRE11 Homologue Protein - genetics</subject><subject>MRE11 Homologue Protein - metabolism</subject><subject>MRE11 protein</subject><subject>Mutation</subject><subject>Pluripotency</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Repair</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Target detection</subject><subject>Target recognition</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP4zAQhS3ECkqXMzcUiQuXwDiOnfiChEKBSkisWsrVcpxJMWptiJNK_Hu8S6l29zCakeabp3l6hJxQuKA0E5fBWHQGL7TeSMjYHhlRkDyVGbB9MgJgIi2h4IfkKIRXgLiT7IAcMhpnIdiIVAtXWx2wSRrs0fTWu8S3STWbzn_N4tSmve6W2IfEumRjNz4ZgnXL5GY6rx6fJ7N0ju8_yY9WrwIeb_uYLG4nT9V9-vB4N62uH1LDC-hT2tSAjEspeW7KvNUSRFNzLESRFxrKptSQ123dcqZNiQYZoxnQggqOmZAZG5OrL923oV5jY9D1nV6pt86udfehvLbq342zL2rpN0rwUoIUUeB8K9D59wFDr9Y2GFyttEM_BJVllMqciVhjcvYf-uqHzkV7f6hogxdFpC6_KNP5EDpsd89QUL8DUtuA1DageHH6t4cd_50I-wRhDYy3</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Wienert, Beeke</creator><creator>Wyman, Stacia K</creator><creator>Richardson, Christopher D</creator><creator>Yeh, Charles D</creator><creator>Akcakaya, Pinar</creator><creator>Porritt, Michelle J</creator><creator>Morlock, Michaela</creator><creator>Vu, Jonathan T</creator><creator>Kazane, Katelynn R</creator><creator>Watry, Hannah L</creator><creator>Judge, Luke M</creator><creator>Conklin, Bruce R</creator><creator>Maresca, Marcello</creator><creator>Corn, Jacob E</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2707-6035</orcidid><orcidid>https://orcid.org/0000-0002-5843-9214</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0003-3122-4851</orcidid><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-1700-0085</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid><orcidid>https://orcid.org/0000-0003-3782-5666</orcidid></search><sort><creationdate>20190419</creationdate><title>Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq</title><author>Wienert, Beeke ; Wyman, Stacia K ; Richardson, Christopher D ; Yeh, Charles D ; Akcakaya, Pinar ; Porritt, Michelle J ; Morlock, Michaela ; Vu, Jonathan T ; Kazane, Katelynn R ; Watry, Hannah L ; Judge, Luke M ; Conklin, Bruce R ; Maresca, Marcello ; Corn, Jacob E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenoviridae</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Change detection</topic><topic>Chromatin Immunoprecipitation</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>CRISPR-Associated Protein 9 - chemistry</topic><topic>CRISPR-Associated Protein 9 - metabolism</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>Editing</topic><topic>Embryos</topic><topic>Gene Editing - methods</topic><topic>Gene sequencing</topic><topic>Genetic modification</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>Induced Pluripotent Stem Cells</topic><topic>K562 Cells</topic><topic>MRE11 Homologue Protein - genetics</topic><topic>MRE11 Homologue Protein - metabolism</topic><topic>MRE11 protein</topic><topic>Mutation</topic><topic>Pluripotency</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Repair</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Target detection</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wienert, Beeke</creatorcontrib><creatorcontrib>Wyman, Stacia K</creatorcontrib><creatorcontrib>Richardson, Christopher D</creatorcontrib><creatorcontrib>Yeh, Charles D</creatorcontrib><creatorcontrib>Akcakaya, Pinar</creatorcontrib><creatorcontrib>Porritt, Michelle J</creatorcontrib><creatorcontrib>Morlock, Michaela</creatorcontrib><creatorcontrib>Vu, Jonathan T</creatorcontrib><creatorcontrib>Kazane, Katelynn R</creatorcontrib><creatorcontrib>Watry, Hannah L</creatorcontrib><creatorcontrib>Judge, Luke M</creatorcontrib><creatorcontrib>Conklin, Bruce R</creatorcontrib><creatorcontrib>Maresca, Marcello</creatorcontrib><creatorcontrib>Corn, Jacob E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wienert, Beeke</au><au>Wyman, Stacia K</au><au>Richardson, Christopher D</au><au>Yeh, Charles D</au><au>Akcakaya, Pinar</au><au>Porritt, Michelle J</au><au>Morlock, Michaela</au><au>Vu, Jonathan T</au><au>Kazane, Katelynn R</au><au>Watry, Hannah L</au><au>Judge, Luke M</au><au>Conklin, Bruce R</au><au>Maresca, Marcello</au><au>Corn, Jacob E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2019-04-19</date><risdate>2019</risdate><volume>364</volume><issue>6437</issue><spage>286</spage><epage>289</epage><pages>286-289</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Author contributions: B.W., S.K.W., C.D.R. and J.E.C. conceived and designed the study and experiments. B.W. performed ChIP-Seq, PCRs for amplicon-NGS and Western Blots in cell lines. S.K.W. analyzed ChIP-Seq and amplicon-NGS data and developed BLENDER software. C.D.Y. performed ChIP-qPCR time course experiments. K.R.K. prepared ChIP-Seq libraries. J.V.T. prepared amplicon-NGS libraries. P.A., M.J.P. and M. Morlock executed intravenous tail vein injections, animal terminations and organ collection and performed Western Blots in mouse tissues. L.M.J. and H.L.W. planned and performed iPSC editing experiments. M. Maresca and B.R.C. supervised experiments and provided expertise. J.E.C. supervised the study. B.W., S.K.W. and J.E.C wrote the manuscript with input from all authors.</notes><notes>authors contributed equally</notes><abstract>CRISPR-Cas genome editing induces targeted DNA damage but can also affect off-target sites. Current off-target discovery methods work using purified DNA or specific cellular models but are incapable of direct detection in vivo. We developed DISCOVER-Seq (discovery of in situ Cas off-targets and verification by sequencing), a universally applicable approach for unbiased off-target identification that leverages the recruitment of DNA repair factors in cells and organisms. Tracking the precise recruitment of MRE11 uncovers the molecular nature of Cas activity in cells with single-base resolution. DISCOVER-Seq works with multiple guide RNA formats and types of Cas enzymes, allowing characterization of new editing tools. Off-targets can be identified in cell lines and patient-derived induced pluripotent stem cells and during adenoviral editing of mice, paving the way for in situ off-target discovery within individual patient genotypes during therapeutic genome editing.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>31000663</pmid><doi>10.1126/science.aav9023</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2707-6035</orcidid><orcidid>https://orcid.org/0000-0002-5843-9214</orcidid><orcidid>https://orcid.org/0000-0002-4950-7967</orcidid><orcidid>https://orcid.org/0000-0003-3122-4851</orcidid><orcidid>https://orcid.org/0000-0002-7798-5309</orcidid><orcidid>https://orcid.org/0000-0003-1700-0085</orcidid><orcidid>https://orcid.org/0000-0002-8937-8397</orcidid><orcidid>https://orcid.org/0000-0003-3782-5666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2019-04, Vol.364 (6437), p.286-289
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6589096
source American Association for the Advancement of Science
subjects Adenoviridae
Animals
Cell Line
Cell lines
Change detection
Chromatin Immunoprecipitation
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
CRISPR-Associated Protein 9 - chemistry
CRISPR-Associated Protein 9 - metabolism
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - genetics
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
DNA Repair Enzymes - metabolism
Editing
Embryos
Gene Editing - methods
Gene sequencing
Genetic modification
Genome editing
Genomes
Genotypes
Heterogeneity
Humans
In vivo methods and tests
Induced Pluripotent Stem Cells
K562 Cells
MRE11 Homologue Protein - genetics
MRE11 Homologue Protein - metabolism
MRE11 protein
Mutation
Pluripotency
Proteins
Recruitment
Repair
Ribonucleic acid
RNA
RNA, Guide, CRISPR-Cas Systems
Sequence Analysis, DNA - methods
Stem cell transplantation
Stem cells
Target detection
Target recognition
title Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unbiased%20detection%20of%20CRISPR%20off-targets%20in%20vivo%20using%20DISCOVER-Seq&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wienert,%20Beeke&rft.date=2019-04-19&rft.volume=364&rft.issue=6437&rft.spage=286&rft.epage=289&rft.pages=286-289&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aav9023&rft_dat=%3Cproquest_pubme%3E2211359577%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c570t-1db0e3599954c84fa906db5e76747a08d8a04bfbf53ac8ece3312017165e26923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2211359577&rft_id=info:pmid/31000663&rfr_iscdi=true