Loading…

Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance

Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-c...

Full description

Saved in:
Bibliographic Details
Published in:Endocrinology (Philadelphia) 2019-05, Vol.160 (5), p.1179-1192
Main Authors: Morris, E Matthew, Meers, Grace M E, Ruegsegger, Gregory N, Wankhade, Umesh D, Robinson, Tommy, Koch, Lauren G, Britton, Steven L, Rector, R Scott, Shankar, Kartik, Thyfault, John P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833
cites cdi_FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833
container_end_page 1192
container_issue 5
container_start_page 1179
container_title Endocrinology (Philadelphia)
container_volume 160
creator Morris, E Matthew
Meers, Grace M E
Ruegsegger, Gregory N
Wankhade, Umesh D
Robinson, Tommy
Koch, Lauren G
Britton, Steven L
Rector, R Scott
Shankar, Kartik
Thyfault, John P
description Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.
doi_str_mv 10.1210/en.2019-00118
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6482035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615491295</galeid><sourcerecordid>A615491295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833</originalsourceid><addsrcrecordid>eNptktFrFDEQxoNYbK0--ioLvviy10yS3c2-CMdV7UGLUvRRQjY7uabsJWeSFfrfm7O1tlLykJnkN98ww0fIG6ALYEBP0C8Yhb6mFEA-I0fQi6buoKPPH8SH5GVK1wURQvAX5JBDiTroj8iPtc_R-eRMdeY2V9USYxhKstI7bVy-qZyvLvSE1aXOqfoaQ0ZTguVGl6JcnTrM9dqPs8GxWvs0T4W_xORS1t7gK3Jg9ZTw9d19TL5_-vhtdVaff_m8Xi3PayMkyzWYzrbYaNpDKwVlAxomLJc4UrSAfdtIS-0wdryxXDPRSGE0t3QcRC87yfkx-XCru5uHLY4Gy1B6UrvotjreqKCdevzj3ZXahF-qLf0pb4rA-zuBGH7OmLLaumRwmrTHMCfFGGeiayWDgr77D70Oc_RlPMV42zCQPfB_1KYsTzlvQ-lr9qJq2UIjemD9vu3iCaqcEbfOBI_WlfdHBfVtgYkhpYj2fkagau8HhV7t_aD--KHwbx8u5p7-awD-G9ZTruI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365218913</pqid></control><display><type>article</type><title>Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance</title><source>Oxford Journals Online</source><creator>Morris, E Matthew ; Meers, Grace M E ; Ruegsegger, Gregory N ; Wankhade, Umesh D ; Robinson, Tommy ; Koch, Lauren G ; Britton, Steven L ; Rector, R Scott ; Shankar, Kartik ; Thyfault, John P</creator><creatorcontrib>Morris, E Matthew ; Meers, Grace M E ; Ruegsegger, Gregory N ; Wankhade, Umesh D ; Robinson, Tommy ; Koch, Lauren G ; Britton, Steven L ; Rector, R Scott ; Shankar, Kartik ; Thyfault, John P</creatorcontrib><description>Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.</description><identifier>ISSN: 1945-7170</identifier><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2019-00118</identifier><identifier>PMID: 31144719</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adaptation ; Adipogenesis ; Adipogenesis - genetics ; Aerobic capacity ; Animals ; Clamps ; Diet ; Diet, High-Fat ; Disease susceptibility ; Divergence ; Endocrinology ; Energy metabolism ; Energy Metabolism - genetics ; Gene expression ; Gene Expression Profiling - methods ; Genes ; Genetic aspects ; Glucose ; Glucose transport ; Health aspects ; High fat diet ; Impact resistance ; Insulin ; Insulin resistance ; Insulin Resistance - genetics ; Lipid metabolism ; Lipid Metabolism - genetics ; Lipids ; Liver ; Liver - metabolism ; Low fat diet ; Male ; Metabolism ; Mitochondria ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Nutrient deficiency ; Oxidation resistance ; Physical Conditioning, Animal - physiology ; Rats ; Risk factors ; Robustness ; Running - physiology ; Sequence Analysis, RNA - methods ; Skeletal muscle ; Sucrose ; Sugar ; Testing ; Tracers ; Transcription ; Transcription (Genetics) ; Type 2 diabetes</subject><ispartof>Endocrinology (Philadelphia), 2019-05, Vol.160 (5), p.1179-1192</ispartof><rights>Copyright © 2019 Endocrine Society.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><rights>Copyright © 2019 Endocrine Society</rights><rights>Copyright © 2019 Endocrine Society 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833</citedby><cites>FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833</cites><orcidid>0000-0001-7920-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31144719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morris, E Matthew</creatorcontrib><creatorcontrib>Meers, Grace M E</creatorcontrib><creatorcontrib>Ruegsegger, Gregory N</creatorcontrib><creatorcontrib>Wankhade, Umesh D</creatorcontrib><creatorcontrib>Robinson, Tommy</creatorcontrib><creatorcontrib>Koch, Lauren G</creatorcontrib><creatorcontrib>Britton, Steven L</creatorcontrib><creatorcontrib>Rector, R Scott</creatorcontrib><creatorcontrib>Shankar, Kartik</creatorcontrib><creatorcontrib>Thyfault, John P</creatorcontrib><title>Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.</description><subject>Adaptation</subject><subject>Adipogenesis</subject><subject>Adipogenesis - genetics</subject><subject>Aerobic capacity</subject><subject>Animals</subject><subject>Clamps</subject><subject>Diet</subject><subject>Diet, High-Fat</subject><subject>Disease susceptibility</subject><subject>Divergence</subject><subject>Endocrinology</subject><subject>Energy metabolism</subject><subject>Energy Metabolism - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Glucose</subject><subject>Glucose transport</subject><subject>Health aspects</subject><subject>High fat diet</subject><subject>Impact resistance</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Low fat diet</subject><subject>Male</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Nutrient deficiency</subject><subject>Oxidation resistance</subject><subject>Physical Conditioning, Animal - physiology</subject><subject>Rats</subject><subject>Risk factors</subject><subject>Robustness</subject><subject>Running - physiology</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Skeletal muscle</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Testing</subject><subject>Tracers</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Type 2 diabetes</subject><issn>1945-7170</issn><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptktFrFDEQxoNYbK0--ioLvviy10yS3c2-CMdV7UGLUvRRQjY7uabsJWeSFfrfm7O1tlLykJnkN98ww0fIG6ALYEBP0C8Yhb6mFEA-I0fQi6buoKPPH8SH5GVK1wURQvAX5JBDiTroj8iPtc_R-eRMdeY2V9USYxhKstI7bVy-qZyvLvSE1aXOqfoaQ0ZTguVGl6JcnTrM9dqPs8GxWvs0T4W_xORS1t7gK3Jg9ZTw9d19TL5_-vhtdVaff_m8Xi3PayMkyzWYzrbYaNpDKwVlAxomLJc4UrSAfdtIS-0wdryxXDPRSGE0t3QcRC87yfkx-XCru5uHLY4Gy1B6UrvotjreqKCdevzj3ZXahF-qLf0pb4rA-zuBGH7OmLLaumRwmrTHMCfFGGeiayWDgr77D70Oc_RlPMV42zCQPfB_1KYsTzlvQ-lr9qJq2UIjemD9vu3iCaqcEbfOBI_WlfdHBfVtgYkhpYj2fkagau8HhV7t_aD--KHwbx8u5p7-awD-G9ZTruI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Morris, E Matthew</creator><creator>Meers, Grace M E</creator><creator>Ruegsegger, Gregory N</creator><creator>Wankhade, Umesh D</creator><creator>Robinson, Tommy</creator><creator>Koch, Lauren G</creator><creator>Britton, Steven L</creator><creator>Rector, R Scott</creator><creator>Shankar, Kartik</creator><creator>Thyfault, John P</creator><general>Oxford University Press</general><general>Endocrine Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7920-7466</orcidid></search><sort><creationdate>20190501</creationdate><title>Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance</title><author>Morris, E Matthew ; Meers, Grace M E ; Ruegsegger, Gregory N ; Wankhade, Umesh D ; Robinson, Tommy ; Koch, Lauren G ; Britton, Steven L ; Rector, R Scott ; Shankar, Kartik ; Thyfault, John P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Adipogenesis</topic><topic>Adipogenesis - genetics</topic><topic>Aerobic capacity</topic><topic>Animals</topic><topic>Clamps</topic><topic>Diet</topic><topic>Diet, High-Fat</topic><topic>Disease susceptibility</topic><topic>Divergence</topic><topic>Endocrinology</topic><topic>Energy metabolism</topic><topic>Energy Metabolism - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Glucose</topic><topic>Glucose transport</topic><topic>Health aspects</topic><topic>High fat diet</topic><topic>Impact resistance</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Low fat diet</topic><topic>Male</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Nutrient deficiency</topic><topic>Oxidation resistance</topic><topic>Physical Conditioning, Animal - physiology</topic><topic>Rats</topic><topic>Risk factors</topic><topic>Robustness</topic><topic>Running - physiology</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Skeletal muscle</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Testing</topic><topic>Tracers</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morris, E Matthew</creatorcontrib><creatorcontrib>Meers, Grace M E</creatorcontrib><creatorcontrib>Ruegsegger, Gregory N</creatorcontrib><creatorcontrib>Wankhade, Umesh D</creatorcontrib><creatorcontrib>Robinson, Tommy</creatorcontrib><creatorcontrib>Koch, Lauren G</creatorcontrib><creatorcontrib>Britton, Steven L</creatorcontrib><creatorcontrib>Rector, R Scott</creatorcontrib><creatorcontrib>Shankar, Kartik</creatorcontrib><creatorcontrib>Thyfault, John P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morris, E Matthew</au><au>Meers, Grace M E</au><au>Ruegsegger, Gregory N</au><au>Wankhade, Umesh D</au><au>Robinson, Tommy</au><au>Koch, Lauren G</au><au>Britton, Steven L</au><au>Rector, R Scott</au><au>Shankar, Kartik</au><au>Thyfault, John P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2019-05-01</date><risdate>2019</risdate><volume>160</volume><issue>5</issue><spage>1179</spage><epage>1192</epage><pages>1179-1192</pages><issn>1945-7170</issn><issn>0013-7227</issn><eissn>1945-7170</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>31144719</pmid><doi>10.1210/en.2019-00118</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7920-7466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-7170
ispartof Endocrinology (Philadelphia), 2019-05, Vol.160 (5), p.1179-1192
issn 1945-7170
0013-7227
1945-7170
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6482035
source Oxford Journals Online
subjects Adaptation
Adipogenesis
Adipogenesis - genetics
Aerobic capacity
Animals
Clamps
Diet
Diet, High-Fat
Disease susceptibility
Divergence
Endocrinology
Energy metabolism
Energy Metabolism - genetics
Gene expression
Gene Expression Profiling - methods
Genes
Genetic aspects
Glucose
Glucose transport
Health aspects
High fat diet
Impact resistance
Insulin
Insulin resistance
Insulin Resistance - genetics
Lipid metabolism
Lipid Metabolism - genetics
Lipids
Liver
Liver - metabolism
Low fat diet
Male
Metabolism
Mitochondria
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Nutrient deficiency
Oxidation resistance
Physical Conditioning, Animal - physiology
Rats
Risk factors
Robustness
Running - physiology
Sequence Analysis, RNA - methods
Skeletal muscle
Sucrose
Sugar
Testing
Tracers
Transcription
Transcription (Genetics)
Type 2 diabetes
title Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T03%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20High%20Aerobic%20Capacity%20in%20Male%20Rats%20Protects%20Against%20Diet-Induced%20Insulin%20Resistance&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Morris,%20E%20Matthew&rft.date=2019-05-01&rft.volume=160&rft.issue=5&rft.spage=1179&rft.epage=1192&rft.pages=1179-1192&rft.issn=1945-7170&rft.eissn=1945-7170&rft_id=info:doi/10.1210/en.2019-00118&rft_dat=%3Cgale_pubme%3EA615491295%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-1c7f6e5a09168402bec24f38ed0ef1e9658f0fbd735f3a24584ca3f0db4987833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2365218913&rft_id=info:pmid/31144719&rft_galeid=A615491295&rfr_iscdi=true