A Physical‐Inorganic Approach for the Elucidation of Active Iron Species and Mechanism in Iron‐Catalyzed Cross‐Coupling

Detailed studies of iron speciation and mechanism in iron‐catalyzed cross‐coupling reactions are critical for providing the necessary fundamental insight to drive new reaction development. However, such insight is challenging to obtain due to the prevalence of mixtures of unstable, paramagnetic orga...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of chemistry 2017-12, Vol.57 (12), p.1106-1116
Main Authors: Carpenter, Stephanie H., Neidig, Michael L.
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Detailed studies of iron speciation and mechanism in iron‐catalyzed cross‐coupling reactions are critical for providing the necessary fundamental insight to drive new reaction development. However, such insight is challenging to obtain due to the prevalence of mixtures of unstable, paramagnetic organoiron species that can form in this chemistry. A physical‐inorganic research approach combining freeze‐trapped inorganic spectroscopic studies, organometallic synthesis and GC/kinetic studies provides a powerful method for studying such systems. Mössbauer, EPR and MCD spectroscopy enable the direct investigation of in situ formed iron species and, combined with GC analysis, the direct correlation of reactions of specific iron species to the generation of organic products. This review focuses on a description of the key methods involved in this physical‐inorganic approach, as well as examples of its application to investigations of iron‐SciOPP catalyzed cross‐coupling catalysis.
ISSN:0021-2148
1869-5868