Loading…

Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis

During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2018-03, Vol.115 (10), p.2437-2442
Main Authors: Serra, Heïdi, Lambing, Christophe, Griffin, Catherine H., Topp, Stephanie D., Nageswaran, Divyashree C., Underwood, Charles J., Ziolkowski, Piotr A., Séguéla-Arnaud, Mathilde, Fernandes, Joiselle B., Mercier, Raphaël, Henderson, Ian R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3
cites cdi_FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3
container_end_page 2442
container_issue 10
container_start_page 2437
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 115
creator Serra, Heïdi
Lambing, Christophe
Griffin, Catherine H.
Topp, Stephanie D.
Nageswaran, Divyashree C.
Underwood, Charles J.
Ziolkowski, Piotr A.
Séguéla-Arnaud, Mathilde
Fernandes, Joiselle B.
Mercier, Raphaël
Henderson, Ian R.
description During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.
doi_str_mv 10.1073/pnas.1713071115
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5877939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26507857</jstor_id><sourcerecordid>26507857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EotPCmhXIEhtYpPX1I7Y3SKOqZSoNYgNry0ns1qNMPLWTSPx7PKS00NWRfb9z_DgIvQNyDkSyi8Ng8zlIYEQCgHiBVkA0VDXX5CVaEUJlpTjlJ-g05x0hRAtFXqMTqnnNaq1XyH6zOYfZ4TbFnOPsEna9m-0Y4oDnYHEb900YlnX0eHN1AwTbocPJtffcLtLgbkphuMXrZJvQxUMOGe9diEXfoFfe9tm9fdAz9PP66sflptp-_3pzud5WLZdyrKClwEFyWyslhPNCUU-FasF3TnOpW1k3YHnHveBeeilrBtxTpWjxN7xhZ-jLknuYmr3rWjeMyfbmkMLepl8m2mD-nwzhztzG2QglpWa6BHxeAu6e2TbrrTnuEVpTyRWbobCfHg5L8X5yeTT7kFvX93ZwccqGklIIpYzRgn58hu7ilIbyFYWiFIBzzQt1sVB_ekjOP94AiDlWbY5Vm6eqi-PDv-995P92W4D3C7DLY0xP81oQqYRkvwFbS62V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022114494</pqid></control><display><type>article</type><title>Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis</title><source>PubMed Central</source><source>JSTOR</source><creator>Serra, Heïdi ; Lambing, Christophe ; Griffin, Catherine H. ; Topp, Stephanie D. ; Nageswaran, Divyashree C. ; Underwood, Charles J. ; Ziolkowski, Piotr A. ; Séguéla-Arnaud, Mathilde ; Fernandes, Joiselle B. ; Mercier, Raphaël ; Henderson, Ian R.</creator><creatorcontrib>Serra, Heïdi ; Lambing, Christophe ; Griffin, Catherine H. ; Topp, Stephanie D. ; Nageswaran, Divyashree C. ; Underwood, Charles J. ; Ziolkowski, Piotr A. ; Séguéla-Arnaud, Mathilde ; Fernandes, Joiselle B. ; Mercier, Raphaël ; Henderson, Ian R.</creatorcontrib><description>During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1713071115</identifier><identifier>PMID: 29463699</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Arabidopsis ; Biological Sciences ; Cell division ; Centromeres ; Chromosomes ; Crop improvement ; Crossovers ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA helicase ; Dosage ; Genes ; Genetic diversity ; Genomes ; Heterochromatin ; Homology ; Life Sciences ; Meiosis ; Mutation ; Polymorphism ; Recombination ; Repair ; Single-stranded DNA ; Ubiquitin-protein ligase ; Vegetal Biology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (10), p.2437-2442</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 6, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3</citedby><cites>FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3</cites><orcidid>0000-0001-6508-6608 ; 0000-0001-7673-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26507857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26507857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29463699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02627483$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Serra, Heïdi</creatorcontrib><creatorcontrib>Lambing, Christophe</creatorcontrib><creatorcontrib>Griffin, Catherine H.</creatorcontrib><creatorcontrib>Topp, Stephanie D.</creatorcontrib><creatorcontrib>Nageswaran, Divyashree C.</creatorcontrib><creatorcontrib>Underwood, Charles J.</creatorcontrib><creatorcontrib>Ziolkowski, Piotr A.</creatorcontrib><creatorcontrib>Séguéla-Arnaud, Mathilde</creatorcontrib><creatorcontrib>Fernandes, Joiselle B.</creatorcontrib><creatorcontrib>Mercier, Raphaël</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><title>Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.</description><subject>Arabidopsis</subject><subject>Biological Sciences</subject><subject>Cell division</subject><subject>Centromeres</subject><subject>Chromosomes</subject><subject>Crop improvement</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA helicase</subject><subject>Dosage</subject><subject>Genes</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Meiosis</subject><subject>Mutation</subject><subject>Polymorphism</subject><subject>Recombination</subject><subject>Repair</subject><subject>Single-stranded DNA</subject><subject>Ubiquitin-protein ligase</subject><subject>Vegetal Biology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhS0EotPCmhXIEhtYpPX1I7Y3SKOqZSoNYgNry0ns1qNMPLWTSPx7PKS00NWRfb9z_DgIvQNyDkSyi8Ng8zlIYEQCgHiBVkA0VDXX5CVaEUJlpTjlJ-g05x0hRAtFXqMTqnnNaq1XyH6zOYfZ4TbFnOPsEna9m-0Y4oDnYHEb900YlnX0eHN1AwTbocPJtffcLtLgbkphuMXrZJvQxUMOGe9diEXfoFfe9tm9fdAz9PP66sflptp-_3pzud5WLZdyrKClwEFyWyslhPNCUU-FasF3TnOpW1k3YHnHveBeeilrBtxTpWjxN7xhZ-jLknuYmr3rWjeMyfbmkMLepl8m2mD-nwzhztzG2QglpWa6BHxeAu6e2TbrrTnuEVpTyRWbobCfHg5L8X5yeTT7kFvX93ZwccqGklIIpYzRgn58hu7ilIbyFYWiFIBzzQt1sVB_ekjOP94AiDlWbY5Vm6eqi-PDv-995P92W4D3C7DLY0xP81oQqYRkvwFbS62V</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Serra, Heïdi</creator><creator>Lambing, Christophe</creator><creator>Griffin, Catherine H.</creator><creator>Topp, Stephanie D.</creator><creator>Nageswaran, Divyashree C.</creator><creator>Underwood, Charles J.</creator><creator>Ziolkowski, Piotr A.</creator><creator>Séguéla-Arnaud, Mathilde</creator><creator>Fernandes, Joiselle B.</creator><creator>Mercier, Raphaël</creator><creator>Henderson, Ian R.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6508-6608</orcidid><orcidid>https://orcid.org/0000-0001-7673-6565</orcidid></search><sort><creationdate>20180306</creationdate><title>Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis</title><author>Serra, Heïdi ; Lambing, Christophe ; Griffin, Catherine H. ; Topp, Stephanie D. ; Nageswaran, Divyashree C. ; Underwood, Charles J. ; Ziolkowski, Piotr A. ; Séguéla-Arnaud, Mathilde ; Fernandes, Joiselle B. ; Mercier, Raphaël ; Henderson, Ian R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arabidopsis</topic><topic>Biological Sciences</topic><topic>Cell division</topic><topic>Centromeres</topic><topic>Chromosomes</topic><topic>Crop improvement</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA helicase</topic><topic>Dosage</topic><topic>Genes</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Meiosis</topic><topic>Mutation</topic><topic>Polymorphism</topic><topic>Recombination</topic><topic>Repair</topic><topic>Single-stranded DNA</topic><topic>Ubiquitin-protein ligase</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serra, Heïdi</creatorcontrib><creatorcontrib>Lambing, Christophe</creatorcontrib><creatorcontrib>Griffin, Catherine H.</creatorcontrib><creatorcontrib>Topp, Stephanie D.</creatorcontrib><creatorcontrib>Nageswaran, Divyashree C.</creatorcontrib><creatorcontrib>Underwood, Charles J.</creatorcontrib><creatorcontrib>Ziolkowski, Piotr A.</creatorcontrib><creatorcontrib>Séguéla-Arnaud, Mathilde</creatorcontrib><creatorcontrib>Fernandes, Joiselle B.</creatorcontrib><creatorcontrib>Mercier, Raphaël</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serra, Heïdi</au><au>Lambing, Christophe</au><au>Griffin, Catherine H.</au><au>Topp, Stephanie D.</au><au>Nageswaran, Divyashree C.</au><au>Underwood, Charles J.</au><au>Ziolkowski, Piotr A.</au><au>Séguéla-Arnaud, Mathilde</au><au>Fernandes, Joiselle B.</au><au>Mercier, Raphaël</au><au>Henderson, Ian R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2018-03-06</date><risdate>2018</risdate><volume>115</volume><issue>10</issue><spage>2437</spage><epage>2442</epage><pages>2437-2442</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>PMCID: PMC5877939</notes><notes>Edited by R. Scott Hawley, Stowers Institute for Medical Research, Kansas City, MO, and approved January 26, 2018 (received for review July 24, 2017)</notes><notes>Author contributions: H.S., C.L., C.H.G., D.C.N., R.M., and I.R.H. designed research; H.S., C.L., C.H.G., S.D.T., and D.C.N. performed research; C.J.U., P.A.Z., M.S.-A., and J.B.F. contributed new reagents/analytic tools; H.S., C.L., C.H.G., S.D.T., D.C.N., and I.R.H. analyzed data; and H.S., C.L., C.H.G., R.M., and I.R.H. wrote the paper.</notes><notes>2Present address: Department of Genome Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland.</notes><notes>1Present address: Vegetable Crop Research, KeyGene, 6708 PW Wageningen, The Netherlands.</notes><abstract>During meiosis, homologous chromosomes undergo reciprocal crossovers, which generate genetic diversity and underpin classical crop improvement. Meiotic recombination initiates from DNA double-strand breaks (DSBs), which are processed into single-stranded DNA that can invade a homologous chromosome. The resulting joint molecules can ultimately be resolved as crossovers. In Arabidopsis, competing pathways balance the repair of ∼100–200 meiotic DSBs into ∼10 crossovers per meiosis, with the excess DSBs repaired as noncrossovers. To bias DSB repair toward crossovers, we simultaneously increased dosage of the procrossover E3 ligase gene HEI10 and introduced mutations in the anticrossovers helicase genes RECQ4A and RECQ4B. As HEI10 and recq4a recq4b increase interfering and noninterfering crossover pathways, respectively, they combine additively to yield a massive meiotic recombination increase. Interestingly, we also show that increased HEI10 dosage increases crossover coincidence, which indicates an effect on interference. We also show that patterns of interhomolog polymorphism and heterochromatin drive recombination increases distally towards the subtelomeres in both HEI10 and recq4a recq4b backgrounds, while the centromeres remain crossover suppressed. These results provide a genetic framework for engineering meiotic recombination landscapes in plant genomes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>29463699</pmid><doi>10.1073/pnas.1713071115</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6508-6608</orcidid><orcidid>https://orcid.org/0000-0001-7673-6565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2018-03, Vol.115 (10), p.2437-2442
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5877939
source PubMed Central; JSTOR
subjects Arabidopsis
Biological Sciences
Cell division
Centromeres
Chromosomes
Crop improvement
Crossovers
Deoxyribonucleic acid
DNA
DNA damage
DNA helicase
Dosage
Genes
Genetic diversity
Genomes
Heterochromatin
Homology
Life Sciences
Meiosis
Mutation
Polymorphism
Recombination
Repair
Single-stranded DNA
Ubiquitin-protein ligase
Vegetal Biology
title Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T09%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20crossover%20elevation%20via%20combination%20of%20HEI10%20and%20recq4a%20recq4b%20during%20Arabidopsis%20meiosis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Serra,%20He%C3%AFdi&rft.date=2018-03-06&rft.volume=115&rft.issue=10&rft.spage=2437&rft.epage=2442&rft.pages=2437-2442&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1713071115&rft_dat=%3Cjstor_pubme%3E26507857%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-1c214174a68855ef582f258c1fde9479c76b1a4d4f54f7f776314f2882c47b4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2022114494&rft_id=info:pmid/29463699&rft_jstor_id=26507857&rfr_iscdi=true