Loading…

Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling

Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll‐like receptor (TLR) activation plays a key role in ethanol‐induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or t...

Full description

Saved in:
Bibliographic Details
Published in:Addiction biology 2018-05, Vol.23 (3), p.889-903
Main Authors: McCarthy, Gizelle M., Warden, Anna S., Bridges, Courtney R., Blednov, Yuri A., Harris, R. Adron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313
cites cdi_FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313
container_end_page 903
container_issue 3
container_start_page 889
container_title Addiction biology
container_volume 23
creator McCarthy, Gizelle M.
Warden, Anna S.
Bridges, Courtney R.
Blednov, Yuri A.
Harris, R. Adron
description Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll‐like receptor (TLR) activation plays a key role in ethanol‐induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every‐other‐day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF‐dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF‐related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF‐dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF‐dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF‐dependent pathway in ethanol‐induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders. Chronic voluntary alcohol results in time‐dependent changes in toll‐like receptor pathways in the prefrontal cortex. These changes include increased expression of Tlr3, components of the TRIF‐dependent pathway, and the interferon inducible gene Cxcl10. The TRIF‐dependent pathway inhibitor Amlexanox reduces Cxcl10 induction in vivo and decreases ethanol consumption, suggesting a role for the TRIF pathway in the regulation of alcohol consumption.
doi_str_mv 10.1111/adb.12539
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5828779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932844837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313</originalsourceid><addsrcrecordid>eNp1kdFKHDEUhkNpqVZ70RcoA72pF-PmJJNM0gvBrlqFBUHW65BkMruR2WSb7LR45yP0Gfskja6KLTQ3J3A-Pv7kR-gD4EMoZ6I7cwiEUfkK7QLlsgaO8ev7O2M1J8B20LucbzAG0jL6Fu0QIRosW7KLTqbLFIO3ldssdYhDZWPI42q98TF8qVIcXBX7aj67opP51cXZ77tfnVu70LmwqbJfBD34sNhHb3o9ZPf-ce6h67PT-fS8nl1-u5gez2rLsJR1TwF6gM52nHZgnSCGUgq8bTphpYBGA-caG85x3xgmrJNEGmNAmJ41FOgeOtp616NZuc6WEEkPap38SqdbFbVXf2-CX6pF_KGYIKJtZRF8fhSk-H10eaNWPls3DDq4OGYFkhLRNIK2Bf30D3oTx1TemxXBpHxqA0AKdbClbIo5J9c_hwGs7rtRpRv10E1hP75M_0w-lVGAyRb46Qd3-3-TOj75ulX-AbOymCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026214112</pqid></control><display><type>article</type><title>Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling</title><source>Wiley-Blackwell Journals</source><creator>McCarthy, Gizelle M. ; Warden, Anna S. ; Bridges, Courtney R. ; Blednov, Yuri A. ; Harris, R. Adron</creator><creatorcontrib>McCarthy, Gizelle M. ; Warden, Anna S. ; Bridges, Courtney R. ; Blednov, Yuri A. ; Harris, R. Adron</creatorcontrib><description>Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll‐like receptor (TLR) activation plays a key role in ethanol‐induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every‐other‐day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF‐dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF‐related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF‐dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF‐dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF‐dependent pathway in ethanol‐induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders. Chronic voluntary alcohol results in time‐dependent changes in toll‐like receptor pathways in the prefrontal cortex. These changes include increased expression of Tlr3, components of the TRIF‐dependent pathway, and the interferon inducible gene Cxcl10. The TRIF‐dependent pathway inhibitor Amlexanox reduces Cxcl10 induction in vivo and decreases ethanol consumption, suggesting a role for the TRIF pathway in the regulation of alcohol consumption.</description><identifier>ISSN: 1355-6215</identifier><identifier>EISSN: 1369-1600</identifier><identifier>DOI: 10.1111/adb.12539</identifier><identifier>PMID: 28840972</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adaptor Proteins, Vesicular Transport - drug effects ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - immunology ; Alcohol ; Alcohol use ; Aminopyridines - pharmacology ; Amlexanox ; Amygdala ; Amygdala - drug effects ; Amygdala - immunology ; Animals ; Brain - drug effects ; Brain - immunology ; Central Nervous System Depressants - pharmacology ; Chemokine CXCL10 - drug effects ; Chemokine CXCL10 - immunology ; chronic ethanol ; CXCL10 protein ; Drinking behavior ; Ethanol ; Ethanol - pharmacology ; I-kappa B Kinase - antagonists &amp; inhibitors ; Immune response ; Interferon ; Lipopolysaccharide Receptors - drug effects ; Lipopolysaccharide Receptors - immunology ; Mice ; Mice, Inbred C57BL ; mRNA ; MyD88 protein ; neuroimmune ; Neuroimmunomodulation - drug effects ; Neuroimmunomodulation - immunology ; Nucleus accumbens ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - immunology ; Prefrontal cortex ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - immunology ; Protein Serine-Threonine Kinases - antagonists &amp; inhibitors ; RNA, Messenger - drug effects ; RNA, Messenger - metabolism ; Rodents ; Signal Transduction ; TLR3 protein ; Toll-Like Receptor 2 - drug effects ; Toll-Like Receptor 2 - immunology ; Toll-Like Receptor 3 - drug effects ; Toll-Like Receptor 3 - genetics ; Toll-Like Receptor 3 - immunology ; Toll-Like Receptor 4 - drug effects ; Toll-Like Receptor 4 - immunology ; Toll-like receptors ; TRIF</subject><ispartof>Addiction biology, 2018-05, Vol.23 (3), p.889-903</ispartof><rights>2017 Society for the Study of Addiction</rights><rights>2017 Society for the Study of Addiction.</rights><rights>2018 Society for the Study of Addiction</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313</citedby><cites>FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313</cites><orcidid>0000-0001-8579-3027 ; 0000-0001-8870-5950 ; 0000-0003-0607-8469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fadb.12539$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fadb.12539$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28840972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCarthy, Gizelle M.</creatorcontrib><creatorcontrib>Warden, Anna S.</creatorcontrib><creatorcontrib>Bridges, Courtney R.</creatorcontrib><creatorcontrib>Blednov, Yuri A.</creatorcontrib><creatorcontrib>Harris, R. Adron</creatorcontrib><title>Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling</title><title>Addiction biology</title><addtitle>Addict Biol</addtitle><description>Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll‐like receptor (TLR) activation plays a key role in ethanol‐induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every‐other‐day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF‐dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF‐related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF‐dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF‐dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF‐dependent pathway in ethanol‐induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders. Chronic voluntary alcohol results in time‐dependent changes in toll‐like receptor pathways in the prefrontal cortex. These changes include increased expression of Tlr3, components of the TRIF‐dependent pathway, and the interferon inducible gene Cxcl10. The TRIF‐dependent pathway inhibitor Amlexanox reduces Cxcl10 induction in vivo and decreases ethanol consumption, suggesting a role for the TRIF pathway in the regulation of alcohol consumption.</description><subject>Adaptor Proteins, Vesicular Transport - drug effects</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - immunology</subject><subject>Alcohol</subject><subject>Alcohol use</subject><subject>Aminopyridines - pharmacology</subject><subject>Amlexanox</subject><subject>Amygdala</subject><subject>Amygdala - drug effects</subject><subject>Amygdala - immunology</subject><subject>Animals</subject><subject>Brain - drug effects</subject><subject>Brain - immunology</subject><subject>Central Nervous System Depressants - pharmacology</subject><subject>Chemokine CXCL10 - drug effects</subject><subject>Chemokine CXCL10 - immunology</subject><subject>chronic ethanol</subject><subject>CXCL10 protein</subject><subject>Drinking behavior</subject><subject>Ethanol</subject><subject>Ethanol - pharmacology</subject><subject>I-kappa B Kinase - antagonists &amp; inhibitors</subject><subject>Immune response</subject><subject>Interferon</subject><subject>Lipopolysaccharide Receptors - drug effects</subject><subject>Lipopolysaccharide Receptors - immunology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>mRNA</subject><subject>MyD88 protein</subject><subject>neuroimmune</subject><subject>Neuroimmunomodulation - drug effects</subject><subject>Neuroimmunomodulation - immunology</subject><subject>Nucleus accumbens</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - immunology</subject><subject>Prefrontal cortex</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - immunology</subject><subject>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>RNA, Messenger - drug effects</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>TLR3 protein</subject><subject>Toll-Like Receptor 2 - drug effects</subject><subject>Toll-Like Receptor 2 - immunology</subject><subject>Toll-Like Receptor 3 - drug effects</subject><subject>Toll-Like Receptor 3 - genetics</subject><subject>Toll-Like Receptor 3 - immunology</subject><subject>Toll-Like Receptor 4 - drug effects</subject><subject>Toll-Like Receptor 4 - immunology</subject><subject>Toll-like receptors</subject><subject>TRIF</subject><issn>1355-6215</issn><issn>1369-1600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdFKHDEUhkNpqVZ70RcoA72pF-PmJJNM0gvBrlqFBUHW65BkMruR2WSb7LR45yP0Gfskja6KLTQ3J3A-Pv7kR-gD4EMoZ6I7cwiEUfkK7QLlsgaO8ev7O2M1J8B20LucbzAG0jL6Fu0QIRosW7KLTqbLFIO3ldssdYhDZWPI42q98TF8qVIcXBX7aj67opP51cXZ77tfnVu70LmwqbJfBD34sNhHb3o9ZPf-ce6h67PT-fS8nl1-u5gez2rLsJR1TwF6gM52nHZgnSCGUgq8bTphpYBGA-caG85x3xgmrJNEGmNAmJ41FOgeOtp616NZuc6WEEkPap38SqdbFbVXf2-CX6pF_KGYIKJtZRF8fhSk-H10eaNWPls3DDq4OGYFkhLRNIK2Bf30D3oTx1TemxXBpHxqA0AKdbClbIo5J9c_hwGs7rtRpRv10E1hP75M_0w-lVGAyRb46Qd3-3-TOj75ulX-AbOymCc</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>McCarthy, Gizelle M.</creator><creator>Warden, Anna S.</creator><creator>Bridges, Courtney R.</creator><creator>Blednov, Yuri A.</creator><creator>Harris, R. Adron</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7TM</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8579-3027</orcidid><orcidid>https://orcid.org/0000-0001-8870-5950</orcidid><orcidid>https://orcid.org/0000-0003-0607-8469</orcidid></search><sort><creationdate>201805</creationdate><title>Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling</title><author>McCarthy, Gizelle M. ; Warden, Anna S. ; Bridges, Courtney R. ; Blednov, Yuri A. ; Harris, R. Adron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptor Proteins, Vesicular Transport - drug effects</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - immunology</topic><topic>Alcohol</topic><topic>Alcohol use</topic><topic>Aminopyridines - pharmacology</topic><topic>Amlexanox</topic><topic>Amygdala</topic><topic>Amygdala - drug effects</topic><topic>Amygdala - immunology</topic><topic>Animals</topic><topic>Brain - drug effects</topic><topic>Brain - immunology</topic><topic>Central Nervous System Depressants - pharmacology</topic><topic>Chemokine CXCL10 - drug effects</topic><topic>Chemokine CXCL10 - immunology</topic><topic>chronic ethanol</topic><topic>CXCL10 protein</topic><topic>Drinking behavior</topic><topic>Ethanol</topic><topic>Ethanol - pharmacology</topic><topic>I-kappa B Kinase - antagonists &amp; inhibitors</topic><topic>Immune response</topic><topic>Interferon</topic><topic>Lipopolysaccharide Receptors - drug effects</topic><topic>Lipopolysaccharide Receptors - immunology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>mRNA</topic><topic>MyD88 protein</topic><topic>neuroimmune</topic><topic>Neuroimmunomodulation - drug effects</topic><topic>Neuroimmunomodulation - immunology</topic><topic>Nucleus accumbens</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - immunology</topic><topic>Prefrontal cortex</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - immunology</topic><topic>Protein Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>RNA, Messenger - drug effects</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>TLR3 protein</topic><topic>Toll-Like Receptor 2 - drug effects</topic><topic>Toll-Like Receptor 2 - immunology</topic><topic>Toll-Like Receptor 3 - drug effects</topic><topic>Toll-Like Receptor 3 - genetics</topic><topic>Toll-Like Receptor 3 - immunology</topic><topic>Toll-Like Receptor 4 - drug effects</topic><topic>Toll-Like Receptor 4 - immunology</topic><topic>Toll-like receptors</topic><topic>TRIF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCarthy, Gizelle M.</creatorcontrib><creatorcontrib>Warden, Anna S.</creatorcontrib><creatorcontrib>Bridges, Courtney R.</creatorcontrib><creatorcontrib>Blednov, Yuri A.</creatorcontrib><creatorcontrib>Harris, R. Adron</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Addiction biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCarthy, Gizelle M.</au><au>Warden, Anna S.</au><au>Bridges, Courtney R.</au><au>Blednov, Yuri A.</au><au>Harris, R. Adron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling</atitle><jtitle>Addiction biology</jtitle><addtitle>Addict Biol</addtitle><date>2018-05</date><risdate>2018</risdate><volume>23</volume><issue>3</issue><spage>889</spage><epage>903</epage><pages>889-903</pages><issn>1355-6215</issn><eissn>1369-1600</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Chronic ethanol consumption stimulates neuroimmune signaling in the brain, and Toll‐like receptor (TLR) activation plays a key role in ethanol‐induced inflammation. However, it is unknown which of the TLR signaling pathways, the myeloid differentiation primary response gene 88 (MyD88) dependent or the TIR‐domain‐containing adapter‐inducing interferon‐β (TRIF) dependent, is activated in response to chronic ethanol. We used voluntary (every‐other‐day) chronic ethanol consumption in adult C57BL/6J mice and measured expression of TLRs and their signaling molecules immediately following consumption and 24 hours after removing alcohol. We focused on the prefrontal cortex where neuroimmune changes are the most robust and also investigated the nucleus accumbens and amygdala. Tlr mRNA and components of the TRIF‐dependent pathway (mRNA and protein) were increased in the prefrontal cortex 24 hours after ethanol and Cxcl10 expression increased 0 hour after ethanol. Expression of Tlr3 and TRIF‐related components increased in the nucleus accumbens, but slightly decreased in the amygdala. In addition, we demonstrate that the IKKε/TBK1 inhibitor Amlexanox decreases immune activation of TRIF‐dependent pathway in the brain and reduces ethanol consumption, suggesting the TRIF‐dependent pathway regulates drinking. Our results support the importance of TLR3 and the TRIF‐dependent pathway in ethanol‐induced neuroimmune signaling and suggest that this pathway could be a target in the treatment of alcohol use disorders. Chronic voluntary alcohol results in time‐dependent changes in toll‐like receptor pathways in the prefrontal cortex. These changes include increased expression of Tlr3, components of the TRIF‐dependent pathway, and the interferon inducible gene Cxcl10. The TRIF‐dependent pathway inhibitor Amlexanox reduces Cxcl10 induction in vivo and decreases ethanol consumption, suggesting a role for the TRIF pathway in the regulation of alcohol consumption.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28840972</pmid><doi>10.1111/adb.12539</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8579-3027</orcidid><orcidid>https://orcid.org/0000-0001-8870-5950</orcidid><orcidid>https://orcid.org/0000-0003-0607-8469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-6215
ispartof Addiction biology, 2018-05, Vol.23 (3), p.889-903
issn 1355-6215
1369-1600
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5828779
source Wiley-Blackwell Journals
subjects Adaptor Proteins, Vesicular Transport - drug effects
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - immunology
Alcohol
Alcohol use
Aminopyridines - pharmacology
Amlexanox
Amygdala
Amygdala - drug effects
Amygdala - immunology
Animals
Brain - drug effects
Brain - immunology
Central Nervous System Depressants - pharmacology
Chemokine CXCL10 - drug effects
Chemokine CXCL10 - immunology
chronic ethanol
CXCL10 protein
Drinking behavior
Ethanol
Ethanol - pharmacology
I-kappa B Kinase - antagonists & inhibitors
Immune response
Interferon
Lipopolysaccharide Receptors - drug effects
Lipopolysaccharide Receptors - immunology
Mice
Mice, Inbred C57BL
mRNA
MyD88 protein
neuroimmune
Neuroimmunomodulation - drug effects
Neuroimmunomodulation - immunology
Nucleus accumbens
Nucleus Accumbens - drug effects
Nucleus Accumbens - immunology
Prefrontal cortex
Prefrontal Cortex - drug effects
Prefrontal Cortex - immunology
Protein Serine-Threonine Kinases - antagonists & inhibitors
RNA, Messenger - drug effects
RNA, Messenger - metabolism
Rodents
Signal Transduction
TLR3 protein
Toll-Like Receptor 2 - drug effects
Toll-Like Receptor 2 - immunology
Toll-Like Receptor 3 - drug effects
Toll-Like Receptor 3 - genetics
Toll-Like Receptor 3 - immunology
Toll-Like Receptor 4 - drug effects
Toll-Like Receptor 4 - immunology
Toll-like receptors
TRIF
title Chronic ethanol consumption: role of TLR3/TRIF‐dependent signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T09%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chronic%20ethanol%20consumption:%20role%20of%20TLR3/TRIF%E2%80%90dependent%20signaling&rft.jtitle=Addiction%20biology&rft.au=McCarthy,%20Gizelle%20M.&rft.date=2018-05&rft.volume=23&rft.issue=3&rft.spage=889&rft.epage=903&rft.pages=889-903&rft.issn=1355-6215&rft.eissn=1369-1600&rft_id=info:doi/10.1111/adb.12539&rft_dat=%3Cproquest_pubme%3E1932844837%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5099-f311f11dcd63d1ce82b3331674d8c9814a166a0b660f4b58ce929bbb18bf54313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2026214112&rft_id=info:pmid/28840972&rfr_iscdi=true