Loading…

Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface

Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding tra...

Full description

Saved in:
Bibliographic Details
Published in:JCI insight 2017-09, Vol.2 (17)
Main Authors: Wei, Jianqin, Joshi, Shaurya, Speransky, Svetlana, Crowley, Christopher, Jayathilaka, Nimanthi, Lei, Xiao, Wu, Yongqing, Gai, David, Jain, Sumit, Hoosien, Michael, Gao, Yan, Chen, Lin, Bishopric, Nanette H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993
cites cdi_FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993
container_end_page
container_issue 17
container_start_page
container_title JCI insight
container_volume 2
creator Wei, Jianqin
Joshi, Shaurya
Speransky, Svetlana
Crowley, Christopher
Jayathilaka, Nimanthi
Lei, Xiao
Wu, Yongqing
Gai, David
Jain, Sumit
Hoosien, Michael
Gao, Yan
Chen, Lin
Bishopric, Nanette H
description Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.
doi_str_mv 10.1172/jci.insight.91068
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5621875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1936622240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993</originalsourceid><addsrcrecordid>eNpVUcFKxDAQDaKo6H6AF-nRS9dk0jbJRRBxVVAWRM8hm063kW5Tk-zC_r1VV1HmMDPMe2-GeYScMTplTMDlm3VT10e3bNNUMVrJPXIMXKicCyr3_9RHZBLjG6WUiQJoKQ_JEUgpJIPimMyfcYMhmi7zTTaY1PrOL50de2tC7YzN2u2AIQU_tNts40yWWsyebmeQWx9wue5M8iFzfcLQGIun5KAxXcTJLp-Q19nty819_ji_e7i5fsxtUZUpZxagloxLZWSFqq4LJizjC2Fr0QheIDSmBGkoVYsxUFLFASxTpQBeK8VPyNW37rBerLC22KdgOj0EtzJhq71x-v-kd61e-o0uK2BSlKPAxU4g-Pc1xqRXLlrsOtOjX0fNFK8qACjoCGXfUBt8jAGb3zWM6k8v9OiF3nmhv7wYOed_7_tl_HyefwDq5IkM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1936622240</pqid></control><display><type>article</type><title>Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface</title><source>PubMed Central</source><creator>Wei, Jianqin ; Joshi, Shaurya ; Speransky, Svetlana ; Crowley, Christopher ; Jayathilaka, Nimanthi ; Lei, Xiao ; Wu, Yongqing ; Gai, David ; Jain, Sumit ; Hoosien, Michael ; Gao, Yan ; Chen, Lin ; Bishopric, Nanette H</creator><creatorcontrib>Wei, Jianqin ; Joshi, Shaurya ; Speransky, Svetlana ; Crowley, Christopher ; Jayathilaka, Nimanthi ; Lei, Xiao ; Wu, Yongqing ; Gai, David ; Jain, Sumit ; Hoosien, Michael ; Gao, Yan ; Chen, Lin ; Bishopric, Nanette H</creatorcontrib><description>Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.</description><identifier>ISSN: 2379-3708</identifier><identifier>EISSN: 2379-3708</identifier><identifier>DOI: 10.1172/jci.insight.91068</identifier><identifier>PMID: 28878124</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Acetylation ; Animals ; Cardiomegaly - genetics ; Cardiomegaly - metabolism ; Cardiomegaly - physiopathology ; Cardiomegaly - prevention &amp; control ; Cells, Cultured ; Histone Deacetylase Inhibitors - pharmacology ; Histone Deacetylases - metabolism ; Humans ; MEF2 Transcription Factors - antagonists &amp; inhibitors ; MEF2 Transcription Factors - metabolism ; Mice ; Myocardial Contraction ; p300-CBP Transcription Factors - biosynthesis ; Phosphorylation ; Protein Binding ; Protein Transport ; Rats ; Repressor Proteins - metabolism ; Stress, Physiological ; Transcription, Genetic</subject><ispartof>JCI insight, 2017-09, Vol.2 (17)</ispartof><rights>Copyright © 2017, American Society for Clinical Investigation 2017 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993</citedby><cites>FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993</cites><orcidid>0000-0003-4798-6199 ; 0000-0002-8398-5997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621875/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621875/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28878124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wei, Jianqin</creatorcontrib><creatorcontrib>Joshi, Shaurya</creatorcontrib><creatorcontrib>Speransky, Svetlana</creatorcontrib><creatorcontrib>Crowley, Christopher</creatorcontrib><creatorcontrib>Jayathilaka, Nimanthi</creatorcontrib><creatorcontrib>Lei, Xiao</creatorcontrib><creatorcontrib>Wu, Yongqing</creatorcontrib><creatorcontrib>Gai, David</creatorcontrib><creatorcontrib>Jain, Sumit</creatorcontrib><creatorcontrib>Hoosien, Michael</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Bishopric, Nanette H</creatorcontrib><title>Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface</title><title>JCI insight</title><addtitle>JCI Insight</addtitle><description>Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Cardiomegaly - genetics</subject><subject>Cardiomegaly - metabolism</subject><subject>Cardiomegaly - physiopathology</subject><subject>Cardiomegaly - prevention &amp; control</subject><subject>Cells, Cultured</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>MEF2 Transcription Factors - antagonists &amp; inhibitors</subject><subject>MEF2 Transcription Factors - metabolism</subject><subject>Mice</subject><subject>Myocardial Contraction</subject><subject>p300-CBP Transcription Factors - biosynthesis</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Rats</subject><subject>Repressor Proteins - metabolism</subject><subject>Stress, Physiological</subject><subject>Transcription, Genetic</subject><issn>2379-3708</issn><issn>2379-3708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVUcFKxDAQDaKo6H6AF-nRS9dk0jbJRRBxVVAWRM8hm063kW5Tk-zC_r1VV1HmMDPMe2-GeYScMTplTMDlm3VT10e3bNNUMVrJPXIMXKicCyr3_9RHZBLjG6WUiQJoKQ_JEUgpJIPimMyfcYMhmi7zTTaY1PrOL50de2tC7YzN2u2AIQU_tNts40yWWsyebmeQWx9wue5M8iFzfcLQGIun5KAxXcTJLp-Q19nty819_ji_e7i5fsxtUZUpZxagloxLZWSFqq4LJizjC2Fr0QheIDSmBGkoVYsxUFLFASxTpQBeK8VPyNW37rBerLC22KdgOj0EtzJhq71x-v-kd61e-o0uK2BSlKPAxU4g-Pc1xqRXLlrsOtOjX0fNFK8qACjoCGXfUBt8jAGb3zWM6k8v9OiF3nmhv7wYOed_7_tl_HyefwDq5IkM</recordid><startdate>20170907</startdate><enddate>20170907</enddate><creator>Wei, Jianqin</creator><creator>Joshi, Shaurya</creator><creator>Speransky, Svetlana</creator><creator>Crowley, Christopher</creator><creator>Jayathilaka, Nimanthi</creator><creator>Lei, Xiao</creator><creator>Wu, Yongqing</creator><creator>Gai, David</creator><creator>Jain, Sumit</creator><creator>Hoosien, Michael</creator><creator>Gao, Yan</creator><creator>Chen, Lin</creator><creator>Bishopric, Nanette H</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4798-6199</orcidid><orcidid>https://orcid.org/0000-0002-8398-5997</orcidid></search><sort><creationdate>20170907</creationdate><title>Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface</title><author>Wei, Jianqin ; Joshi, Shaurya ; Speransky, Svetlana ; Crowley, Christopher ; Jayathilaka, Nimanthi ; Lei, Xiao ; Wu, Yongqing ; Gai, David ; Jain, Sumit ; Hoosien, Michael ; Gao, Yan ; Chen, Lin ; Bishopric, Nanette H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Cardiomegaly - genetics</topic><topic>Cardiomegaly - metabolism</topic><topic>Cardiomegaly - physiopathology</topic><topic>Cardiomegaly - prevention &amp; control</topic><topic>Cells, Cultured</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>MEF2 Transcription Factors - antagonists &amp; inhibitors</topic><topic>MEF2 Transcription Factors - metabolism</topic><topic>Mice</topic><topic>Myocardial Contraction</topic><topic>p300-CBP Transcription Factors - biosynthesis</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Rats</topic><topic>Repressor Proteins - metabolism</topic><topic>Stress, Physiological</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Jianqin</creatorcontrib><creatorcontrib>Joshi, Shaurya</creatorcontrib><creatorcontrib>Speransky, Svetlana</creatorcontrib><creatorcontrib>Crowley, Christopher</creatorcontrib><creatorcontrib>Jayathilaka, Nimanthi</creatorcontrib><creatorcontrib>Lei, Xiao</creatorcontrib><creatorcontrib>Wu, Yongqing</creatorcontrib><creatorcontrib>Gai, David</creatorcontrib><creatorcontrib>Jain, Sumit</creatorcontrib><creatorcontrib>Hoosien, Michael</creatorcontrib><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Bishopric, Nanette H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>JCI insight</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Jianqin</au><au>Joshi, Shaurya</au><au>Speransky, Svetlana</au><au>Crowley, Christopher</au><au>Jayathilaka, Nimanthi</au><au>Lei, Xiao</au><au>Wu, Yongqing</au><au>Gai, David</au><au>Jain, Sumit</au><au>Hoosien, Michael</au><au>Gao, Yan</au><au>Chen, Lin</au><au>Bishopric, Nanette H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface</atitle><jtitle>JCI insight</jtitle><addtitle>JCI Insight</addtitle><date>2017-09-07</date><risdate>2017</risdate><volume>2</volume><issue>17</issue><issn>2379-3708</issn><eissn>2379-3708</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Authorship note: J. Wei and S. Joshi contributed equally to this work.</notes><abstract>Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>28878124</pmid><doi>10.1172/jci.insight.91068</doi><orcidid>https://orcid.org/0000-0003-4798-6199</orcidid><orcidid>https://orcid.org/0000-0002-8398-5997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-3708
ispartof JCI insight, 2017-09, Vol.2 (17)
issn 2379-3708
2379-3708
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5621875
source PubMed Central
subjects Acetylation
Animals
Cardiomegaly - genetics
Cardiomegaly - metabolism
Cardiomegaly - physiopathology
Cardiomegaly - prevention & control
Cells, Cultured
Histone Deacetylase Inhibitors - pharmacology
Histone Deacetylases - metabolism
Humans
MEF2 Transcription Factors - antagonists & inhibitors
MEF2 Transcription Factors - metabolism
Mice
Myocardial Contraction
p300-CBP Transcription Factors - biosynthesis
Phosphorylation
Protein Binding
Protein Transport
Rats
Repressor Proteins - metabolism
Stress, Physiological
Transcription, Genetic
title Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T21%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversal%20of%20pathological%20cardiac%20hypertrophy%20via%20the%20MEF2-coregulator%20interface&rft.jtitle=JCI%20insight&rft.au=Wei,%20Jianqin&rft.date=2017-09-07&rft.volume=2&rft.issue=17&rft.issn=2379-3708&rft.eissn=2379-3708&rft_id=info:doi/10.1172/jci.insight.91068&rft_dat=%3Cproquest_pubme%3E1936622240%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-1c22d81389a86e9dd417c13b7cd7f734e2fa528a009b9b9e809322c195723d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1936622240&rft_id=info:pmid/28878124&rfr_iscdi=true