Loading…

DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease

The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methyl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-09, Vol.114 (36), p.E7526-E7535
Main Authors: Jeziorska, Danuta M., Murray, Robert J. S., De Gobbi, Marco, Gaentzsch, Ricarda, Garrick, David, Ayyub, Helena, Chen, Taiping, Li, En, Telenius, Jelena, Lynch, Magnus, Graham, Bryony, Smith, Andrew J. H., Lund, Jonathan N., Hughes, Jim R., Higgs, Douglas R., Tufarelli, Cristina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3
cites cdi_FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3
container_end_page E7535
container_issue 36
container_start_page E7526
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Jeziorska, Danuta M.
Murray, Robert J. S.
De Gobbi, Marco
Gaentzsch, Ricarda
Garrick, David
Ayyub, Helena
Chen, Taiping
Li, En
Telenius, Jelena
Lynch, Magnus
Graham, Bryony
Smith, Andrew J. H.
Lund, Jonathan N.
Hughes, Jim R.
Higgs, Douglas R.
Tufarelli, Cristina
description The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.
doi_str_mv 10.1073/pnas.1703087114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487650</jstor_id><sourcerecordid>26487650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3</originalsourceid><addsrcrecordid>eNpVkctvEzEQxi0EomnhzAlkifO2fq3tvSBVAVqkCi5wtiZrO3G08S62Eyn_fb1Kn6eRZn7zzeND6BMll5QofjVFyJdUEU60olS8QQtKOtpI0ZG3aEEIU40WTJyh85y3hJCu1eQ9OmNaM8W5WKDD99_XeOfK5jhACWPEo8chlgRrF0OPl9MNDnmAaDO2bnJzrFDZuJBwpWLuU5jmRhgw9CUcQjliu08hrrEN3rvkYgkn6apSc9lBdh_QOw9Ddh8f4gX69_PH3-Vtc_fn5tfy-q7pheCl6aBvJXeCQic1s4zbTknJtJdKrKQAyWq6W2lYtR4011RTJT1lDizlFjy_QN9OutN-tXO2d_Npg5lS2EE6mhGCeV2JYWPW48G0bSfqF6vA1weBNP7fu1zMdtynem02dCY4pVJX6upE9WnMOTn_NIESMxtlZqPMs1G148vLxZ74R2cq8PkEbHMZ03NdCq1kS_g9ej-bkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946431168</pqid></control><display><type>article</type><title>DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Jeziorska, Danuta M. ; Murray, Robert J. S. ; De Gobbi, Marco ; Gaentzsch, Ricarda ; Garrick, David ; Ayyub, Helena ; Chen, Taiping ; Li, En ; Telenius, Jelena ; Lynch, Magnus ; Graham, Bryony ; Smith, Andrew J. H. ; Lund, Jonathan N. ; Hughes, Jim R. ; Higgs, Douglas R. ; Tufarelli, Cristina</creator><creatorcontrib>Jeziorska, Danuta M. ; Murray, Robert J. S. ; De Gobbi, Marco ; Gaentzsch, Ricarda ; Garrick, David ; Ayyub, Helena ; Chen, Taiping ; Li, En ; Telenius, Jelena ; Lynch, Magnus ; Graham, Bryony ; Smith, Andrew J. H. ; Lund, Jonathan N. ; Hughes, Jim R. ; Higgs, Douglas R. ; Tufarelli, Cristina</creatorcontrib><description>The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1703087114</identifier><identifier>PMID: 28827334</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Differentiation - genetics ; Cell Line ; Chromatin ; CpG islands ; CpG Islands - genetics ; Deoxyribonucleic acid ; Differentiation ; DNA ; DNA methylation ; DNA Methylation - genetics ; DNA methyltransferase ; Epigenesis, Genetic - genetics ; Epigenetics ; Genome, Human - genetics ; Genomes ; Humans ; Islands ; Malignancy ; Mice ; PNAS Plus ; Promoter Regions, Genetic - genetics ; Promoters ; Sequence Analysis, DNA - methods ; Studies ; Transcription, Genetic - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.E7526-E7535</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Sep 5, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3</citedby><cites>FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3</cites><orcidid>0000-0002-1053-4618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487650$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487650$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28827334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeziorska, Danuta M.</creatorcontrib><creatorcontrib>Murray, Robert J. S.</creatorcontrib><creatorcontrib>De Gobbi, Marco</creatorcontrib><creatorcontrib>Gaentzsch, Ricarda</creatorcontrib><creatorcontrib>Garrick, David</creatorcontrib><creatorcontrib>Ayyub, Helena</creatorcontrib><creatorcontrib>Chen, Taiping</creatorcontrib><creatorcontrib>Li, En</creatorcontrib><creatorcontrib>Telenius, Jelena</creatorcontrib><creatorcontrib>Lynch, Magnus</creatorcontrib><creatorcontrib>Graham, Bryony</creatorcontrib><creatorcontrib>Smith, Andrew J. H.</creatorcontrib><creatorcontrib>Lund, Jonathan N.</creatorcontrib><creatorcontrib>Hughes, Jim R.</creatorcontrib><creatorcontrib>Higgs, Douglas R.</creatorcontrib><creatorcontrib>Tufarelli, Cristina</creatorcontrib><title>DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Chromatin</subject><subject>CpG islands</subject><subject>CpG Islands - genetics</subject><subject>Deoxyribonucleic acid</subject><subject>Differentiation</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA Methylation - genetics</subject><subject>DNA methyltransferase</subject><subject>Epigenesis, Genetic - genetics</subject><subject>Epigenetics</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Humans</subject><subject>Islands</subject><subject>Malignancy</subject><subject>Mice</subject><subject>PNAS Plus</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Studies</subject><subject>Transcription, Genetic - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkctvEzEQxi0EomnhzAlkifO2fq3tvSBVAVqkCi5wtiZrO3G08S62Eyn_fb1Kn6eRZn7zzeND6BMll5QofjVFyJdUEU60olS8QQtKOtpI0ZG3aEEIU40WTJyh85y3hJCu1eQ9OmNaM8W5WKDD99_XeOfK5jhACWPEo8chlgRrF0OPl9MNDnmAaDO2bnJzrFDZuJBwpWLuU5jmRhgw9CUcQjliu08hrrEN3rvkYgkn6apSc9lBdh_QOw9Ddh8f4gX69_PH3-Vtc_fn5tfy-q7pheCl6aBvJXeCQic1s4zbTknJtJdKrKQAyWq6W2lYtR4011RTJT1lDizlFjy_QN9OutN-tXO2d_Npg5lS2EE6mhGCeV2JYWPW48G0bSfqF6vA1weBNP7fu1zMdtynem02dCY4pVJX6upE9WnMOTn_NIESMxtlZqPMs1G148vLxZ74R2cq8PkEbHMZ03NdCq1kS_g9ej-bkg</recordid><startdate>20170905</startdate><enddate>20170905</enddate><creator>Jeziorska, Danuta M.</creator><creator>Murray, Robert J. S.</creator><creator>De Gobbi, Marco</creator><creator>Gaentzsch, Ricarda</creator><creator>Garrick, David</creator><creator>Ayyub, Helena</creator><creator>Chen, Taiping</creator><creator>Li, En</creator><creator>Telenius, Jelena</creator><creator>Lynch, Magnus</creator><creator>Graham, Bryony</creator><creator>Smith, Andrew J. H.</creator><creator>Lund, Jonathan N.</creator><creator>Hughes, Jim R.</creator><creator>Higgs, Douglas R.</creator><creator>Tufarelli, Cristina</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1053-4618</orcidid></search><sort><creationdate>20170905</creationdate><title>DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease</title><author>Jeziorska, Danuta M. ; Murray, Robert J. S. ; De Gobbi, Marco ; Gaentzsch, Ricarda ; Garrick, David ; Ayyub, Helena ; Chen, Taiping ; Li, En ; Telenius, Jelena ; Lynch, Magnus ; Graham, Bryony ; Smith, Andrew J. H. ; Lund, Jonathan N. ; Hughes, Jim R. ; Higgs, Douglas R. ; Tufarelli, Cristina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Chromatin</topic><topic>CpG islands</topic><topic>CpG Islands - genetics</topic><topic>Deoxyribonucleic acid</topic><topic>Differentiation</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA Methylation - genetics</topic><topic>DNA methyltransferase</topic><topic>Epigenesis, Genetic - genetics</topic><topic>Epigenetics</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Humans</topic><topic>Islands</topic><topic>Malignancy</topic><topic>Mice</topic><topic>PNAS Plus</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Studies</topic><topic>Transcription, Genetic - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeziorska, Danuta M.</creatorcontrib><creatorcontrib>Murray, Robert J. S.</creatorcontrib><creatorcontrib>De Gobbi, Marco</creatorcontrib><creatorcontrib>Gaentzsch, Ricarda</creatorcontrib><creatorcontrib>Garrick, David</creatorcontrib><creatorcontrib>Ayyub, Helena</creatorcontrib><creatorcontrib>Chen, Taiping</creatorcontrib><creatorcontrib>Li, En</creatorcontrib><creatorcontrib>Telenius, Jelena</creatorcontrib><creatorcontrib>Lynch, Magnus</creatorcontrib><creatorcontrib>Graham, Bryony</creatorcontrib><creatorcontrib>Smith, Andrew J. H.</creatorcontrib><creatorcontrib>Lund, Jonathan N.</creatorcontrib><creatorcontrib>Hughes, Jim R.</creatorcontrib><creatorcontrib>Higgs, Douglas R.</creatorcontrib><creatorcontrib>Tufarelli, Cristina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeziorska, Danuta M.</au><au>Murray, Robert J. S.</au><au>De Gobbi, Marco</au><au>Gaentzsch, Ricarda</au><au>Garrick, David</au><au>Ayyub, Helena</au><au>Chen, Taiping</au><au>Li, En</au><au>Telenius, Jelena</au><au>Lynch, Magnus</au><au>Graham, Bryony</au><au>Smith, Andrew J. H.</au><au>Lund, Jonathan N.</au><au>Hughes, Jim R.</au><au>Higgs, Douglas R.</au><au>Tufarelli, Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-09-05</date><risdate>2017</risdate><volume>114</volume><issue>36</issue><spage>E7526</spage><epage>E7535</epage><pages>E7526-E7535</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><notes>Author contributions: D.M.J., A.J.H.S., J.R.H., D.R.H., and C.T. designed research; D.M.J., R.J.S.M., M.D.G., R.G., D.G., H.A., T.C., J.T., M.L., B.G., and C.T. performed research; T.C., E.L., M.L., A.J.H.S., J.N.L., J.R.H., D.R.H., and C.T. contributed new reagents/analytic tools; D.M.J., R.J.S.M., J.T., J.R.H., and C.T. analyzed data; D.M.J., D.R.H., and C.T. wrote the paper; and E.L., A.J.H.S., J.N.L., D.R.H., and C.T. provided supervision.</notes><notes>4Present address: INSERM, UMRS-1126, Institut Universitaire d’Hématologie, Université Paris, 75010 Paris, France.</notes><notes>2Present address: Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, 10043 Orbassano (Torino), Italy.</notes><notes>5Present address: Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R 2LS, United Kingdom.</notes><notes>Edited by Adrian P. Bird, University of Edinburgh, Edinburgh, United Kingdom, and approved July 28, 2017 (received for review February 23, 2017)</notes><notes>3Present address: Seven Bridges Genomics, London NW1 2RA, United Kingdom.</notes><notes>1Present address: Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.</notes><abstract>The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28827334</pmid><doi>10.1073/pnas.1703087114</doi><orcidid>https://orcid.org/0000-0002-1053-4618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-09, Vol.114 (36), p.E7526-E7535
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5594649
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Biological Sciences
Cell Differentiation - genetics
Cell Line
Chromatin
CpG islands
CpG Islands - genetics
Deoxyribonucleic acid
Differentiation
DNA
DNA methylation
DNA Methylation - genetics
DNA methyltransferase
Epigenesis, Genetic - genetics
Epigenetics
Genome, Human - genetics
Genomes
Humans
Islands
Malignancy
Mice
PNAS Plus
Promoter Regions, Genetic - genetics
Promoters
Sequence Analysis, DNA - methods
Studies
Transcription, Genetic - genetics
title DNA methylation of intragenic CpG islands depends on their transcriptional activity during differentiation and disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20methylation%20of%20intragenic%20CpG%20islands%20depends%20on%20their%20transcriptional%20activity%20during%20differentiation%20and%20disease&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jeziorska,%20Danuta%20M.&rft.date=2017-09-05&rft.volume=114&rft.issue=36&rft.spage=E7526&rft.epage=E7535&rft.pages=E7526-E7535&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1703087114&rft_dat=%3Cjstor_pubme%3E26487650%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-9ac563e41a9682d23d976628f674b64a626829b8ab5fa83818176f12ead13daf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946431168&rft_id=info:pmid/28827334&rft_jstor_id=26487650&rfr_iscdi=true