Loading…
Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data
During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct f...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2017-05, Vol.152, p.538-550 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33 |
container_end_page | 550 |
container_issue | |
container_start_page | 538 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 152 |
creator | Deco, Gustavo Cabral, Joana Woolrich, Mark W. Stevner, Angus B.A. van Hartevelt, Tim J. Kringelbach, Morten L. |
description | During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct fundamental scenarios: one where each brain area generates oscillations in a single frequency, and a novel one where each brain area can generate oscillations in multiple frequency bands. The models share, as a common generator of damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the critical border between the steady state and the oscillatory regime. The envelopes of the simulated signals are compared with empirical MEG data using new methods to analyse the envelope dynamics in terms of their phase coherence and stability across the spectrum of carrier frequencies.
Considering the whole-brain model with a single frequency generator in each brain area, we obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 12Hz. However, when multiple frequency generators are placed at each local brain area, we obtain an improved fit of the spatio-temporal structure of on-going MEG data across all frequency bands. Our results indicate that the brain is likely to operate on multiple frequency channels during rest, introducing a novel dimension for future models of large-scale brain activity.
•Resting-state MEG reveals correlated amplitude envelopes between brain areas.•Envelope functional connectivity spans a range of carrier frequencies.•Local emergence of carrier oscillations modeled with a Hopf bifurcation model.•Each brain area may resonate at one or multiple fundamental frequencies.•Multiple resonant frequencies outperform the single frequency scenario.
[Display omitted] |
doi_str_mv | 10.1016/j.neuroimage.2017.03.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381191730232X</els_id><sourcerecordid>1878825900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33</originalsourceid><addsrcrecordid>eNqFUk2P0zAQjRCIXRb-ArLEhUvC2I6TmAPSsloWpEUcgLPlOJPWVWIX2ynqv8elpXxcOFjjkd-b8bx5RUEoVBRo82pTOVyCt7NeYcWAthXwChh_UFxSkKKUomUPD3fBy45SeVE8iXEDAJLW3ePignWcirqhl8X-s3WrCYkPZF6mZLf5Pgb8tqAze7JCh0EnHyKxjnhXrnyGkz7onGqT7M6m_WtyTWY0a-1sTNaQ72s_YXnEzH7AifiR4Ly1wRo9kY-3d2TQST8tHo16ivjsFK-Kr-9uv9y8L-8_3X24ub4vTdNCKmvWoNHQ96JvezoKDfVYM2C6ybGmbcNawczINRgJemQjgxZQ6KanvBU951fFm2Pd7dLPOBh0KehJbUNWL-yV11b9_eLsWq38Tom6zso2uQA9FjBxMSqgwWB0-kk8J4eTGzPFaUNlnTkvT02Dz1rGpGYbDU6TduiXqGjXdh0TEiBDX_wD3fgluCxJRsmOQi0ly6ju9IngYww4ngegoA6eUBv12xPq4AkFXGVPZOrzPwU4E3-ZIAPeHgGY17CzGFQ0Nu8fB5sHTGrw9v9dfgApqM6l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104992</pqid></control><display><type>article</type><title>Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data</title><source>ScienceDirect Journals</source><creator>Deco, Gustavo ; Cabral, Joana ; Woolrich, Mark W. ; Stevner, Angus B.A. ; van Hartevelt, Tim J. ; Kringelbach, Morten L.</creator><creatorcontrib>Deco, Gustavo ; Cabral, Joana ; Woolrich, Mark W. ; Stevner, Angus B.A. ; van Hartevelt, Tim J. ; Kringelbach, Morten L.</creatorcontrib><description>During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct fundamental scenarios: one where each brain area generates oscillations in a single frequency, and a novel one where each brain area can generate oscillations in multiple frequency bands. The models share, as a common generator of damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the critical border between the steady state and the oscillatory regime. The envelopes of the simulated signals are compared with empirical MEG data using new methods to analyse the envelope dynamics in terms of their phase coherence and stability across the spectrum of carrier frequencies.
Considering the whole-brain model with a single frequency generator in each brain area, we obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 12Hz. However, when multiple frequency generators are placed at each local brain area, we obtain an improved fit of the spatio-temporal structure of on-going MEG data across all frequency bands. Our results indicate that the brain is likely to operate on multiple frequency channels during rest, introducing a novel dimension for future models of large-scale brain activity.
•Resting-state MEG reveals correlated amplitude envelopes between brain areas.•Envelope functional connectivity spans a range of carrier frequencies.•Local emergence of carrier oscillations modeled with a Hopf bifurcation model.•Each brain area may resonate at one or multiple fundamental frequencies.•Multiple resonant frequencies outperform the single frequency scenario.
[Display omitted]</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.03.023</identifier><identifier>PMID: 28315461</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Banded structure ; Brain ; Brain - physiology ; Brain mapping ; Brain Waves ; Carrier frequencies ; Computer simulation ; Diagnòstic per la imatge ; Diffusion Tensor Imaging ; Dynamic stability ; Envelopes ; Female ; Fourier transforms ; Frequency generators ; Functional magnetic resonance imaging ; Hopf bifurcation ; Humans ; Magnetoencephalography ; Male ; Models, Neurological ; Network topologies ; Neural Pathways - physiology ; Neurons ; Oscillations ; Signal Processing, Computer-Assisted ; Sistema nerviós ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.538-550</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2017</rights><rights>info:eu-repo/semantics/openAccess © 2017 The Authors. Published by Elsevier Inc. <a href="http://dx.doi.org/10.1016/j.neuroimage.2017.03.023. Under">http://dx.doi.org/10.1016/j.neuroimage.2017.03.023. Under</a> a Creative Commons license. <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a></rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33</citedby><cites>FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,783,787,888,27937,27938</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28315461$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deco, Gustavo</creatorcontrib><creatorcontrib>Cabral, Joana</creatorcontrib><creatorcontrib>Woolrich, Mark W.</creatorcontrib><creatorcontrib>Stevner, Angus B.A.</creatorcontrib><creatorcontrib>van Hartevelt, Tim J.</creatorcontrib><creatorcontrib>Kringelbach, Morten L.</creatorcontrib><title>Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct fundamental scenarios: one where each brain area generates oscillations in a single frequency, and a novel one where each brain area can generate oscillations in multiple frequency bands. The models share, as a common generator of damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the critical border between the steady state and the oscillatory regime. The envelopes of the simulated signals are compared with empirical MEG data using new methods to analyse the envelope dynamics in terms of their phase coherence and stability across the spectrum of carrier frequencies.
Considering the whole-brain model with a single frequency generator in each brain area, we obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 12Hz. However, when multiple frequency generators are placed at each local brain area, we obtain an improved fit of the spatio-temporal structure of on-going MEG data across all frequency bands. Our results indicate that the brain is likely to operate on multiple frequency channels during rest, introducing a novel dimension for future models of large-scale brain activity.
•Resting-state MEG reveals correlated amplitude envelopes between brain areas.•Envelope functional connectivity spans a range of carrier frequencies.•Local emergence of carrier oscillations modeled with a Hopf bifurcation model.•Each brain area may resonate at one or multiple fundamental frequencies.•Multiple resonant frequencies outperform the single frequency scenario.
[Display omitted]</description><subject>Adult</subject><subject>Banded structure</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Waves</subject><subject>Carrier frequencies</subject><subject>Computer simulation</subject><subject>Diagnòstic per la imatge</subject><subject>Diffusion Tensor Imaging</subject><subject>Dynamic stability</subject><subject>Envelopes</subject><subject>Female</subject><subject>Fourier transforms</subject><subject>Frequency generators</subject><subject>Functional magnetic resonance imaging</subject><subject>Hopf bifurcation</subject><subject>Humans</subject><subject>Magnetoencephalography</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Network topologies</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Oscillations</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sistema nerviós</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUk2P0zAQjRCIXRb-ArLEhUvC2I6TmAPSsloWpEUcgLPlOJPWVWIX2ynqv8elpXxcOFjjkd-b8bx5RUEoVBRo82pTOVyCt7NeYcWAthXwChh_UFxSkKKUomUPD3fBy45SeVE8iXEDAJLW3ePignWcirqhl8X-s3WrCYkPZF6mZLf5Pgb8tqAze7JCh0EnHyKxjnhXrnyGkz7onGqT7M6m_WtyTWY0a-1sTNaQ72s_YXnEzH7AifiR4Ly1wRo9kY-3d2TQST8tHo16ivjsFK-Kr-9uv9y8L-8_3X24ub4vTdNCKmvWoNHQ96JvezoKDfVYM2C6ybGmbcNawczINRgJemQjgxZQ6KanvBU951fFm2Pd7dLPOBh0KehJbUNWL-yV11b9_eLsWq38Tom6zso2uQA9FjBxMSqgwWB0-kk8J4eTGzPFaUNlnTkvT02Dz1rGpGYbDU6TduiXqGjXdh0TEiBDX_wD3fgluCxJRsmOQi0ly6ju9IngYww4ngegoA6eUBv12xPq4AkFXGVPZOrzPwU4E3-ZIAPeHgGY17CzGFQ0Nu8fB5sHTGrw9v9dfgApqM6l</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Deco, Gustavo</creator><creator>Cabral, Joana</creator><creator>Woolrich, Mark W.</creator><creator>Stevner, Angus B.A.</creator><creator>van Hartevelt, Tim J.</creator><creator>Kringelbach, Morten L.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Elsevier</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20170515</creationdate><title>Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data</title><author>Deco, Gustavo ; Cabral, Joana ; Woolrich, Mark W. ; Stevner, Angus B.A. ; van Hartevelt, Tim J. ; Kringelbach, Morten L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Banded structure</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Waves</topic><topic>Carrier frequencies</topic><topic>Computer simulation</topic><topic>Diagnòstic per la imatge</topic><topic>Diffusion Tensor Imaging</topic><topic>Dynamic stability</topic><topic>Envelopes</topic><topic>Female</topic><topic>Fourier transforms</topic><topic>Frequency generators</topic><topic>Functional magnetic resonance imaging</topic><topic>Hopf bifurcation</topic><topic>Humans</topic><topic>Magnetoencephalography</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Network topologies</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Oscillations</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sistema nerviós</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deco, Gustavo</creatorcontrib><creatorcontrib>Cabral, Joana</creatorcontrib><creatorcontrib>Woolrich, Mark W.</creatorcontrib><creatorcontrib>Stevner, Angus B.A.</creatorcontrib><creatorcontrib>van Hartevelt, Tim J.</creatorcontrib><creatorcontrib>Kringelbach, Morten L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deco, Gustavo</au><au>Cabral, Joana</au><au>Woolrich, Mark W.</au><au>Stevner, Angus B.A.</au><au>van Hartevelt, Tim J.</au><au>Kringelbach, Morten L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>152</volume><spage>538</spage><epage>550</epage><pages>538-550</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in consistent patterns, which have been related to resting-state networks measured with fMRI. To investigate the genesis of such envelope correlations, we consider a whole-brain network model assuming two distinct fundamental scenarios: one where each brain area generates oscillations in a single frequency, and a novel one where each brain area can generate oscillations in multiple frequency bands. The models share, as a common generator of damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the critical border between the steady state and the oscillatory regime. The envelopes of the simulated signals are compared with empirical MEG data using new methods to analyse the envelope dynamics in terms of their phase coherence and stability across the spectrum of carrier frequencies.
Considering the whole-brain model with a single frequency generator in each brain area, we obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 12Hz. However, when multiple frequency generators are placed at each local brain area, we obtain an improved fit of the spatio-temporal structure of on-going MEG data across all frequency bands. Our results indicate that the brain is likely to operate on multiple frequency channels during rest, introducing a novel dimension for future models of large-scale brain activity.
•Resting-state MEG reveals correlated amplitude envelopes between brain areas.•Envelope functional connectivity spans a range of carrier frequencies.•Local emergence of carrier oscillations modeled with a Hopf bifurcation model.•Each brain area may resonate at one or multiple fundamental frequencies.•Multiple resonant frequencies outperform the single frequency scenario.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28315461</pmid><doi>10.1016/j.neuroimage.2017.03.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.538-550 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440176 |
source | ScienceDirect Journals |
subjects | Adult Banded structure Brain Brain - physiology Brain mapping Brain Waves Carrier frequencies Computer simulation Diagnòstic per la imatge Diffusion Tensor Imaging Dynamic stability Envelopes Female Fourier transforms Frequency generators Functional magnetic resonance imaging Hopf bifurcation Humans Magnetoencephalography Male Models, Neurological Network topologies Neural Pathways - physiology Neurons Oscillations Signal Processing, Computer-Assisted Sistema nerviós Young Adult |
title | Single or multiple frequency generators in on-going brain activity: A mechanistic whole-brain model of empirical MEG data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-11T05%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20or%20multiple%20frequency%20generators%20in%20on-going%20brain%20activity:%20A%20mechanistic%20whole-brain%20model%20of%20empirical%20MEG%20data&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Deco,%20Gustavo&rft.date=2017-05-15&rft.volume=152&rft.spage=538&rft.epage=550&rft.pages=538-550&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.03.023&rft_dat=%3Cproquest_pubme%3E1878825900%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c670t-426eca0bb5b7b1f5a04f4202a64f441762752cf3a0c90af2f2070e5a6b1375b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898104992&rft_id=info:pmid/28315461&rfr_iscdi=true |