Loading…

Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory

Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co‐evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, s...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2017-04, Vol.26 (7), p.1964-1979
Main Authors: Parratt, Steven R., Barrès, Benoit, Penczykowski, Rachel M., Laine, Anna‐Liisa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823
cites cdi_FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823
container_end_page 1979
container_issue 7
container_start_page 1964
container_title Molecular ecology
container_volume 26
creator Parratt, Steven R.
Barrès, Benoit
Penczykowski, Rachel M.
Laine, Anna‐Liisa
description Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co‐evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen–hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.
doi_str_mv 10.1111/mec.13928
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891857911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823</originalsourceid><addsrcrecordid>eNqNks9qFTEUh4Mo9lpd-AIScKOLaZNMZiZxUZBL_QNX3Ci4C2cymTspucmY5FZmI76Db-iTmPbWooJgNuEkHx_nJD-EHlNyQss63Rl9QmvJxB20onXbVEzyT3fRisiWVZSI-gg9SOmCEFqzprmPjlgnGikpWaGvm6DBYRhgzpBt8Bgynux2MhHnGObJauzMpXHpBdbB5wgpW7_F0zKbOEMpbTY_vn2fIU9hazy2fjT6WjQsHnZWp3KE82TwaI0bMPgBO-hDhBzi8hDdG8El8-hmP0YfX51_WL-pNu9fv12_3FSad62oemE46WVNajlw3gzQDroTI-fSDMCADFzzkY71CI1uuGC1rGsm-w7KmJSV-hidHbzzvt-ZQZurSZyao91BXFQAq_688XZS23CpGk5Z23VF8OxGEMPnvUlZ7WzSxjnwJuyTokJS0XSS0v9AORWEibYt6NO_0Iuwj768RKFERwlhhBTq-YHSMaQUzXjbNyXqKgCqBEBdB6CwT34f9Jb89eMFOD0AX6wzy79N6t35-qD8CVL1vYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887100200</pqid></control><display><type>article</type><title>Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory</title><source>Wiley Online Library</source><creator>Parratt, Steven R. ; Barrès, Benoit ; Penczykowski, Rachel M. ; Laine, Anna‐Liisa</creator><creatorcontrib>Parratt, Steven R. ; Barrès, Benoit ; Penczykowski, Rachel M. ; Laine, Anna‐Liisa</creatorcontrib><description>Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co‐evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen–hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13928</identifier><identifier>PMID: 27859910</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological - genetics ; Ampelomyces ; Ascomycota - genetics ; Ascomycota - pathogenicity ; co‐evolution ; disease ; Genotype ; Host-Pathogen Interactions - genetics ; host–parasite interactions ; hyperparasite ; Insights on Microbial Adaptation from Patterns of Local Adaptation in Nature ; local adaptation ; Microbial Local Adaptation ; Plant Diseases - microbiology ; Plantago - microbiology</subject><ispartof>Molecular ecology, 2017-04, Vol.26 (7), p.1964-1979</ispartof><rights>2016 The Authors Published by John Wiley &amp; Sons Ltd.</rights><rights>2016 The Authors Molecular Ecology Published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823</citedby><cites>FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823</cites><orcidid>0000-0002-6777-0275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.13928$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.13928$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27859910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parratt, Steven R.</creatorcontrib><creatorcontrib>Barrès, Benoit</creatorcontrib><creatorcontrib>Penczykowski, Rachel M.</creatorcontrib><creatorcontrib>Laine, Anna‐Liisa</creatorcontrib><title>Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co‐evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen–hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.</description><subject>Adaptation, Physiological - genetics</subject><subject>Ampelomyces</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - pathogenicity</subject><subject>co‐evolution</subject><subject>disease</subject><subject>Genotype</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>host–parasite interactions</subject><subject>hyperparasite</subject><subject>Insights on Microbial Adaptation from Patterns of Local Adaptation in Nature</subject><subject>local adaptation</subject><subject>Microbial Local Adaptation</subject><subject>Plant Diseases - microbiology</subject><subject>Plantago - microbiology</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqNks9qFTEUh4Mo9lpd-AIScKOLaZNMZiZxUZBL_QNX3Ci4C2cymTspucmY5FZmI76Db-iTmPbWooJgNuEkHx_nJD-EHlNyQss63Rl9QmvJxB20onXbVEzyT3fRisiWVZSI-gg9SOmCEFqzprmPjlgnGikpWaGvm6DBYRhgzpBt8Bgynux2MhHnGObJauzMpXHpBdbB5wgpW7_F0zKbOEMpbTY_vn2fIU9hazy2fjT6WjQsHnZWp3KE82TwaI0bMPgBO-hDhBzi8hDdG8El8-hmP0YfX51_WL-pNu9fv12_3FSad62oemE46WVNajlw3gzQDroTI-fSDMCADFzzkY71CI1uuGC1rGsm-w7KmJSV-hidHbzzvt-ZQZurSZyao91BXFQAq_688XZS23CpGk5Z23VF8OxGEMPnvUlZ7WzSxjnwJuyTokJS0XSS0v9AORWEibYt6NO_0Iuwj768RKFERwlhhBTq-YHSMaQUzXjbNyXqKgCqBEBdB6CwT34f9Jb89eMFOD0AX6wzy79N6t35-qD8CVL1vYs</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Parratt, Steven R.</creator><creator>Barrès, Benoit</creator><creator>Penczykowski, Rachel M.</creator><creator>Laine, Anna‐Liisa</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6777-0275</orcidid></search><sort><creationdate>201704</creationdate><title>Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory</title><author>Parratt, Steven R. ; Barrès, Benoit ; Penczykowski, Rachel M. ; Laine, Anna‐Liisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Ampelomyces</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - pathogenicity</topic><topic>co‐evolution</topic><topic>disease</topic><topic>Genotype</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>host–parasite interactions</topic><topic>hyperparasite</topic><topic>Insights on Microbial Adaptation from Patterns of Local Adaptation in Nature</topic><topic>local adaptation</topic><topic>Microbial Local Adaptation</topic><topic>Plant Diseases - microbiology</topic><topic>Plantago - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parratt, Steven R.</creatorcontrib><creatorcontrib>Barrès, Benoit</creatorcontrib><creatorcontrib>Penczykowski, Rachel M.</creatorcontrib><creatorcontrib>Laine, Anna‐Liisa</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parratt, Steven R.</au><au>Barrès, Benoit</au><au>Penczykowski, Rachel M.</au><au>Laine, Anna‐Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2017-04</date><risdate>2017</risdate><volume>26</volume><issue>7</issue><spage>1964</spage><epage>1979</epage><pages>1964-1979</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Predicting and controlling infectious disease epidemics is a major challenge facing the management of agriculture, human and wildlife health. Co‐evolutionarily derived patterns of local adaptation among pathogen populations have the potential to generate variation in disease epidemiology; however, studies of local adaptation in disease systems have mostly focused on interactions between competing pathogens or pathogens and their hosts. In nature, parasites and pathogens are also subject to attack by hyperparasitic natural enemies that can severely impact upon their infection dynamics. However, few studies have investigated whether this interaction varies across combinations of pathogen–hyperparasite strains, and whether this influences hyperparasite incidence in natural pathogen populations. Here, we test whether the association between a hyperparasitic fungus, Ampelomyces, and a single powdery mildew host, Podosphaera plantaginis, varies among genotype combinations, and whether this drives hyperparasite incidence in nature. Laboratory inoculation studies reveal that genotype, genotype × genotype interactions and local adaptation affect hyperparasite infection. However, observations of a natural pathogen metapopulation reveal that spatial rather than genetic factors predict the risk of hyperparasite presence. Our results highlight how sensitive the outcome of biocontrol using hyperparasites is to selection of hyperparasite strains.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27859910</pmid><doi>10.1111/mec.13928</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6777-0275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2017-04, Vol.26 (7), p.1964-1979
issn 0962-1083
1365-294X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412677
source Wiley Online Library
subjects Adaptation, Physiological - genetics
Ampelomyces
Ascomycota - genetics
Ascomycota - pathogenicity
co‐evolution
disease
Genotype
Host-Pathogen Interactions - genetics
host–parasite interactions
hyperparasite
Insights on Microbial Adaptation from Patterns of Local Adaptation in Nature
local adaptation
Microbial Local Adaptation
Plant Diseases - microbiology
Plantago - microbiology
title Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20adaptation%20at%20higher%20trophic%20levels:%20contrasting%20hyperparasite%E2%80%93pathogen%20infection%20dynamics%20in%20the%20field%20and%20laboratory&rft.jtitle=Molecular%20ecology&rft.au=Parratt,%20Steven%20R.&rft.date=2017-04&rft.volume=26&rft.issue=7&rft.spage=1964&rft.epage=1979&rft.pages=1964-1979&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13928&rft_dat=%3Cproquest_pubme%3E1891857911%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4768-b8e40b93039d445da6dc78f449eda2a0d4c4f1f3fa5c5482393329b7a85912823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1887100200&rft_id=info:pmid/27859910&rfr_iscdi=true