Loading…

DNA Replication Origins and Fork Progression at Mammalian Telomeres

Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed th...

Full description

Saved in:
Bibliographic Details
Published in:Genes 2017-03, Vol.8 (4), p.112
Main Authors: Higa, Mitsunori, Fujita, Masatoshi, Yoshida, Kazumasa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873
cites cdi_FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873
container_end_page
container_issue 4
container_start_page 112
container_title Genes
container_volume 8
creator Higa, Mitsunori
Fujita, Masatoshi
Yoshida, Kazumasa
description Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.
doi_str_mv 10.3390/genes8040112
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881772227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMottTuXMuAGxdW805mI5RqVahWpK5DZpqpqTNJTWYE_71TWkv1bu6F83FfB4BTBK8ISeH1wjgTJaQQIXwAuhgKMqAUs8O9ugP6MS5hGxRiCNkx6GBJGCSCdMHo9nmYvJpVaXNdW--SabAL62Ki3TwZ-_CRvAS_CCbGtajr5ElXlS6tdsnMlL4yrXQCjgpdRtPf5h54G9_NRg-DyfT-cTScDHIqZD3geSY0T-c0FQjDnKVECyoM4yxLM84LJBGXBZ9LLiRFiPC0YJAymWdIUy0F6YGbTd9Vk1VmnhtXB12qVbCVDt_Ka6v-Ks6-q4X_UoxCLtt5PXCxbRD8Z2NirSobc1OW2hnfRIWkREJgjNezzv-hS98E157XUmna_k8w0lKXGyoPPsZgit0yCKq1QWrfoBY_2z9gB__aQX4Ac6OKXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899835753</pqid></control><display><type>article</type><title>DNA Replication Origins and Fork Progression at Mammalian Telomeres</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Higa, Mitsunori ; Fujita, Masatoshi ; Yoshida, Kazumasa</creator><creatorcontrib>Higa, Mitsunori ; Fujita, Masatoshi ; Yoshida, Kazumasa</creatorcontrib><description>Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes8040112</identifier><identifier>PMID: 28350373</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Review</subject><ispartof>Genes, 2017-03, Vol.8 (4), p.112</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873</citedby><cites>FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899835753/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899835753?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28350373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higa, Mitsunori</creatorcontrib><creatorcontrib>Fujita, Masatoshi</creatorcontrib><creatorcontrib>Yoshida, Kazumasa</creatorcontrib><title>DNA Replication Origins and Fork Progression at Mammalian Telomeres</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.</description><subject>Review</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtLAzEUhYMottTuXMuAGxdW805mI5RqVahWpK5DZpqpqTNJTWYE_71TWkv1bu6F83FfB4BTBK8ISeH1wjgTJaQQIXwAuhgKMqAUs8O9ugP6MS5hGxRiCNkx6GBJGCSCdMHo9nmYvJpVaXNdW--SabAL62Ki3TwZ-_CRvAS_CCbGtajr5ElXlS6tdsnMlL4yrXQCjgpdRtPf5h54G9_NRg-DyfT-cTScDHIqZD3geSY0T-c0FQjDnKVECyoM4yxLM84LJBGXBZ9LLiRFiPC0YJAymWdIUy0F6YGbTd9Vk1VmnhtXB12qVbCVDt_Ka6v-Ks6-q4X_UoxCLtt5PXCxbRD8Z2NirSobc1OW2hnfRIWkREJgjNezzv-hS98E157XUmna_k8w0lKXGyoPPsZgit0yCKq1QWrfoBY_2z9gB__aQX4Ac6OKXw</recordid><startdate>20170328</startdate><enddate>20170328</enddate><creator>Higa, Mitsunori</creator><creator>Fujita, Masatoshi</creator><creator>Yoshida, Kazumasa</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170328</creationdate><title>DNA Replication Origins and Fork Progression at Mammalian Telomeres</title><author>Higa, Mitsunori ; Fujita, Masatoshi ; Yoshida, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higa, Mitsunori</creatorcontrib><creatorcontrib>Fujita, Masatoshi</creatorcontrib><creatorcontrib>Yoshida, Kazumasa</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higa, Mitsunori</au><au>Fujita, Masatoshi</au><au>Yoshida, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA Replication Origins and Fork Progression at Mammalian Telomeres</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2017-03-28</date><risdate>2017</risdate><volume>8</volume><issue>4</issue><spage>112</spage><pages>112-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-3</notes><notes>content type line 23</notes><notes>ObjectType-Review-1</notes><abstract>Telomeres are essential chromosomal regions that prevent critical shortening of linear chromosomes and genomic instability in eukaryotic cells. The bulk of telomeric DNA is replicated by semi-conservative DNA replication in the same way as the rest of the genome. However, recent findings revealed that replication of telomeric repeats is a potential cause of chromosomal instability, because DNA replication through telomeres is challenged by the repetitive telomeric sequences and specific structures that hamper the replication fork. In this review, we summarize current understanding of the mechanisms by which telomeres are faithfully and safely replicated in mammalian cells. Various telomere-associated proteins ensure efficient telomere replication at different steps, such as licensing of replication origins, passage of replication forks, proper fork restart after replication stress, and dissolution of post-replicative structures. In particular, shelterin proteins have central roles in the control of telomere replication. Through physical interactions, accessory proteins are recruited to maintain telomere integrity during DNA replication. Dormant replication origins and/or homology-directed repair may rescue inappropriate fork stalling or collapse that can cause defects in telomere structure and functions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28350373</pmid><doi>10.3390/genes8040112</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2017-03, Vol.8 (4), p.112
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406859
source Publicly Available Content Database; PubMed Central
subjects Review
title DNA Replication Origins and Fork Progression at Mammalian Telomeres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T17%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20Replication%20Origins%20and%20Fork%20Progression%20at%20Mammalian%20Telomeres&rft.jtitle=Genes&rft.au=Higa,%20Mitsunori&rft.date=2017-03-28&rft.volume=8&rft.issue=4&rft.spage=112&rft.pages=112-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes8040112&rft_dat=%3Cproquest_pubme%3E1881772227%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-6cb7a69d497120c593a747e565b9b66f18168f6d8678411369f50458cb1a4a873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899835753&rft_id=info:pmid/28350373&rfr_iscdi=true