Loading…

Programming Light-Harvesting Efficiency Using DNA Origami

The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in lig...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2016-04, Vol.16 (4), p.2369-2374
Main Authors: Hemmig, Elisa A, Creatore, Celestino, Wünsch, Bettina, Hecker, Lisa, Mair, Philip, Parker, M. Andy, Emmott, Stephen, Tinnefeld, Philip, Keyser, Ulrich F, Chin, Alex W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033
cites cdi_FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033
container_end_page 2374
container_issue 4
container_start_page 2369
container_title Nano letters
container_volume 16
creator Hemmig, Elisa A
Creatore, Celestino
Wünsch, Bettina
Hecker, Lisa
Mair, Philip
Parker, M. Andy
Emmott, Stephen
Tinnefeld, Philip
Keyser, Ulrich F
Chin, Alex W
description The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.
doi_str_mv 10.1021/acs.nanolett.5b05139
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1781152780</sourcerecordid><originalsourceid>FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMo3t9ApEs3U09mksxkI4jWCxTrwq7DmTQzjcxFk2mhb2-GXtCNuko4-c9Hfj5CLigMKcT0GrUfNti0lem6Ic-B00TukWPKE4iElPH-7p6xI3Li_TsAyITDITmKhQTBuDgm8tW1pcO6tk05GNty3kVP6JbGd_1gVBRWW9Po1WDq-8H9y-1g4myJtT0jBwVW3pxvzlMyfRi93T1F48nj893tOEKe0S7SmiPGOUCexjNEk7GCaUkLhjpHZnImUi7A5CJhsmCJZijiNAPGZwDIIUlOyc2a-7HIazPTpukcVurD2RrdSrVo1c-Xxs5V2S4VBwhtswC42gBc-7kIzVRtvTZVhY1pF17RjAqgVKbJ39FUsoBN439Q04xS3lcJUbaOatd670yx-zwF1btUwaXaulQbl2Ht8nvx3dJWXgjAOtCvv7cL1wQPvzO_AKchrho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781152780</pqid></control><display><type>article</type><title>Programming Light-Harvesting Efficiency Using DNA Origami</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hemmig, Elisa A ; Creatore, Celestino ; Wünsch, Bettina ; Hecker, Lisa ; Mair, Philip ; Parker, M. Andy ; Emmott, Stephen ; Tinnefeld, Philip ; Keyser, Ulrich F ; Chin, Alex W</creator><creatorcontrib>Hemmig, Elisa A ; Creatore, Celestino ; Wünsch, Bettina ; Hecker, Lisa ; Mair, Philip ; Parker, M. Andy ; Emmott, Stephen ; Tinnefeld, Philip ; Keyser, Ulrich F ; Chin, Alex W</creatorcontrib><description>The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b05139</identifier><identifier>PMID: 26906456</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antennas ; Biological ; Carbocyanines - chemistry ; Deoxyribonucleic acid ; DNA - chemistry ; Fluorescence ; Letter ; Light ; Nanostructure ; Organizing ; Photochemical Processes ; Platforms ; Spectrometry, Fluorescence ; Spectroscopy</subject><ispartof>Nano letters, 2016-04, Vol.16 (4), p.2369-2374</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright © 2016 American Chemical Society 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033</citedby><cites>FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26906456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hemmig, Elisa A</creatorcontrib><creatorcontrib>Creatore, Celestino</creatorcontrib><creatorcontrib>Wünsch, Bettina</creatorcontrib><creatorcontrib>Hecker, Lisa</creatorcontrib><creatorcontrib>Mair, Philip</creatorcontrib><creatorcontrib>Parker, M. Andy</creatorcontrib><creatorcontrib>Emmott, Stephen</creatorcontrib><creatorcontrib>Tinnefeld, Philip</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><creatorcontrib>Chin, Alex W</creatorcontrib><title>Programming Light-Harvesting Efficiency Using DNA Origami</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.</description><subject>Antennas</subject><subject>Biological</subject><subject>Carbocyanines - chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>Fluorescence</subject><subject>Letter</subject><subject>Light</subject><subject>Nanostructure</subject><subject>Organizing</subject><subject>Photochemical Processes</subject><subject>Platforms</subject><subject>Spectrometry, Fluorescence</subject><subject>Spectroscopy</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkctKAzEUhoMo3t9ApEs3U09mksxkI4jWCxTrwq7DmTQzjcxFk2mhb2-GXtCNuko4-c9Hfj5CLigMKcT0GrUfNti0lem6Ic-B00TukWPKE4iElPH-7p6xI3Li_TsAyITDITmKhQTBuDgm8tW1pcO6tk05GNty3kVP6JbGd_1gVBRWW9Po1WDq-8H9y-1g4myJtT0jBwVW3pxvzlMyfRi93T1F48nj893tOEKe0S7SmiPGOUCexjNEk7GCaUkLhjpHZnImUi7A5CJhsmCJZijiNAPGZwDIIUlOyc2a-7HIazPTpukcVurD2RrdSrVo1c-Xxs5V2S4VBwhtswC42gBc-7kIzVRtvTZVhY1pF17RjAqgVKbJ39FUsoBN439Q04xS3lcJUbaOatd670yx-zwF1btUwaXaulQbl2Ht8nvx3dJWXgjAOtCvv7cL1wQPvzO_AKchrho</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Hemmig, Elisa A</creator><creator>Creatore, Celestino</creator><creator>Wünsch, Bettina</creator><creator>Hecker, Lisa</creator><creator>Mair, Philip</creator><creator>Parker, M. Andy</creator><creator>Emmott, Stephen</creator><creator>Tinnefeld, Philip</creator><creator>Keyser, Ulrich F</creator><creator>Chin, Alex W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20160413</creationdate><title>Programming Light-Harvesting Efficiency Using DNA Origami</title><author>Hemmig, Elisa A ; Creatore, Celestino ; Wünsch, Bettina ; Hecker, Lisa ; Mair, Philip ; Parker, M. Andy ; Emmott, Stephen ; Tinnefeld, Philip ; Keyser, Ulrich F ; Chin, Alex W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antennas</topic><topic>Biological</topic><topic>Carbocyanines - chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>Fluorescence</topic><topic>Letter</topic><topic>Light</topic><topic>Nanostructure</topic><topic>Organizing</topic><topic>Photochemical Processes</topic><topic>Platforms</topic><topic>Spectrometry, Fluorescence</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemmig, Elisa A</creatorcontrib><creatorcontrib>Creatore, Celestino</creatorcontrib><creatorcontrib>Wünsch, Bettina</creatorcontrib><creatorcontrib>Hecker, Lisa</creatorcontrib><creatorcontrib>Mair, Philip</creatorcontrib><creatorcontrib>Parker, M. Andy</creatorcontrib><creatorcontrib>Emmott, Stephen</creatorcontrib><creatorcontrib>Tinnefeld, Philip</creatorcontrib><creatorcontrib>Keyser, Ulrich F</creatorcontrib><creatorcontrib>Chin, Alex W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemmig, Elisa A</au><au>Creatore, Celestino</au><au>Wünsch, Bettina</au><au>Hecker, Lisa</au><au>Mair, Philip</au><au>Parker, M. Andy</au><au>Emmott, Stephen</au><au>Tinnefeld, Philip</au><au>Keyser, Ulrich F</au><au>Chin, Alex W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programming Light-Harvesting Efficiency Using DNA Origami</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>2369</spage><epage>2374</epage><pages>2369-2374</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>The remarkable performance and quantum efficiency of biological light-harvesting complexes has prompted a multidisciplinary interest in engineering biologically inspired antenna systems as a possible route to novel solar cell technologies. Key to the effectiveness of biological “nanomachines” in light capture and energy transport is their highly ordered nanoscale architecture of photoactive molecules. Recently, DNA origami has emerged as a powerful tool for organizing multiple chromophores with base-pair accuracy and full geometric freedom. Here, we present a programmable antenna array on a DNA origami platform that enables the implementation of rationally designed antenna structures. We systematically analyze the light-harvesting efficiency with respect to number of donors and interdye distances of a ring-like antenna using ensemble and single-molecule fluorescence spectroscopy and detailed Förster modeling. This comprehensive study demonstrates exquisite and reliable structural control over multichromophoric geometries and points to DNA origami as highly versatile platform for testing design concepts in artificial light-harvesting networks.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26906456</pmid><doi>10.1021/acs.nanolett.5b05139</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2016-04, Vol.16 (4), p.2369-2374
issn 1530-6984
1530-6992
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5003508
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Antennas
Biological
Carbocyanines - chemistry
Deoxyribonucleic acid
DNA - chemistry
Fluorescence
Letter
Light
Nanostructure
Organizing
Photochemical Processes
Platforms
Spectrometry, Fluorescence
Spectroscopy
title Programming Light-Harvesting Efficiency Using DNA Origami
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T07%3A25%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programming%20Light-Harvesting%20Efficiency%20Using%20DNA%20Origami&rft.jtitle=Nano%20letters&rft.au=Hemmig,%20Elisa%20A&rft.date=2016-04-13&rft.volume=16&rft.issue=4&rft.spage=2369&rft.epage=2374&rft.pages=2369-2374&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b05139&rft_dat=%3Cproquest_pubme%3E1781152780%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a581t-cc5aa2b00b72daae84f4c91f4acba4eb467560eb6349f43c4a6278045d00a5033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1781152780&rft_id=info:pmid/26906456&rfr_iscdi=true