Loading…

Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases

Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respir...

Full description

Saved in:
Bibliographic Details
Published in:ChemMedChem 2015-07, Vol.10 (7), p.1163-1173
Main Authors: von Nussbaum, Franz, Li, Volkhart M.-J., Allerheiligen, Swen, Anlauf, Sonja, Bärfacker, Lars, Bechem, Martin, Delbeck, Martina, Fitzgerald, Mary F., Gerisch, Michael, Gielen-Haertwig, Heike, Haning, Helmut, Karthaus, Dagmar, Lang, Dieter, Lustig, Klemens, Meibom, Daniel, Mittendorf, Joachim, Rosentreter, Ulrich, Schäfer, Martina, Schäfer, Stefan, Schamberger, Jens, Telan, Leila A., Tersteegen, Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3
cites cdi_FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3
container_end_page 1173
container_issue 7
container_start_page 1163
container_title ChemMedChem
container_volume 10
creator von Nussbaum, Franz
Li, Volkhart M.-J.
Allerheiligen, Swen
Anlauf, Sonja
Bärfacker, Lars
Bechem, Martin
Delbeck, Martina
Fitzgerald, Mary F.
Gerisch, Michael
Gielen-Haertwig, Heike
Haning, Helmut
Karthaus, Dagmar
Lang, Dieter
Lustig, Klemens
Meibom, Daniel
Mittendorf, Joachim
Rosentreter, Ulrich
Schäfer, Martina
Schäfer, Stefan
Schamberger, Jens
Telan, Leila A.
Tersteegen, Adrian
description Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases. Breathe better: It′s as potent as a low‐molecular‐weight inhibitor can get! Human neutrophil elastase (HNE) is a driver of pulmonary diseases. We describe the discovery of BAY 85‐8501, a small‐molecule inhibitor with picomolar in vitro potency against HNE. BAY 85‐8501 is currently being assessed in clinical studies for pulmonary diseases.
doi_str_mv 10.1002/cmdc.201500131
format article
fullrecord <record><control><sourceid>istex_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_DTDGPW1F_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3</originalsourceid><addsrcrecordid>eNqFkUFv0zAYhiMEYmNw5Yj8A0ixEyd2OSCt6dpVKluldZo4WY5jr4bErmx3UE5c9nv2n_gluAqLxomLbX1-n_f77DdJ3iI4QhBmH0TXiFEGUQEhytGz5BjREqYEUfJ8OJPxUfLK-68QYkwRfZkcZSWkeZaT4-Rh5qT8qc0tCBsJJtpyEfSdBJU1yrqOB20NCBZMrPUBrGyQRuw_gnUULxppglZa9CKrwOT0y-9f97RIaQHRe8DBlWxl78dN09MBLMxG1zpYd0DOdx034ELugrPbjW7BWct94F6C2B6sdm1nDXd7MNVexqp_nbxQvPXyzd_9JLmena2r83R5OV9Up8tUxHehVMiyoUqRekxwoTjK81KIpuaqxooTQhGP3wUbiJVCuM7iOuZlKXhBMFW4aPKT5FPvu93VnWxEHNzxlm2d7uI4zHLN_r0xesNu7R3DRcyC4mgw6g2Es947qQYWQXaIjh2iY0N0EXj3tOMgf8wqCsa94Ltu5f4_dqz6PK2emqc9q32QPwaWu2-sJDkp2M3FnE3X0_nqBs3YMv8Djca5tQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases</title><source>Wiley</source><creator>von Nussbaum, Franz ; Li, Volkhart M.-J. ; Allerheiligen, Swen ; Anlauf, Sonja ; Bärfacker, Lars ; Bechem, Martin ; Delbeck, Martina ; Fitzgerald, Mary F. ; Gerisch, Michael ; Gielen-Haertwig, Heike ; Haning, Helmut ; Karthaus, Dagmar ; Lang, Dieter ; Lustig, Klemens ; Meibom, Daniel ; Mittendorf, Joachim ; Rosentreter, Ulrich ; Schäfer, Martina ; Schäfer, Stefan ; Schamberger, Jens ; Telan, Leila A. ; Tersteegen, Adrian</creator><creatorcontrib>von Nussbaum, Franz ; Li, Volkhart M.-J. ; Allerheiligen, Swen ; Anlauf, Sonja ; Bärfacker, Lars ; Bechem, Martin ; Delbeck, Martina ; Fitzgerald, Mary F. ; Gerisch, Michael ; Gielen-Haertwig, Heike ; Haning, Helmut ; Karthaus, Dagmar ; Lang, Dieter ; Lustig, Klemens ; Meibom, Daniel ; Mittendorf, Joachim ; Rosentreter, Ulrich ; Schäfer, Martina ; Schäfer, Stefan ; Schamberger, Jens ; Telan, Leila A. ; Tersteegen, Adrian</creatorcontrib><description>Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases. Breathe better: It′s as potent as a low‐molecular‐weight inhibitor can get! Human neutrophil elastase (HNE) is a driver of pulmonary diseases. We describe the discovery of BAY 85‐8501, a small‐molecule inhibitor with picomolar in vitro potency against HNE. BAY 85‐8501 is currently being assessed in clinical studies for pulmonary diseases.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201500131</identifier><identifier>PMID: 26083237</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>biginelli reaction ; biological activity ; Dose-Response Relationship, Drug ; elastase inhibitors ; Freezing ; Humans ; Leukocyte Elastase - antagonists &amp; inhibitors ; Leukocyte Elastase - metabolism ; Lung Diseases - enzymology ; Molecular Conformation ; proteases ; Proteinase Inhibitory Proteins, Secretory - chemistry ; Proteinase Inhibitory Proteins, Secretory - pharmacology ; pyrimidinones ; Pyrimidinones - chemistry ; Pyrimidinones - pharmacology ; Structure-Activity Relationship ; Sulfones - chemistry ; Sulfones - pharmacology</subject><ispartof>ChemMedChem, 2015-07, Vol.10 (7), p.1163-1173</ispartof><rights>2015 The Authors. Published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.</rights><rights>2015 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3</citedby><cites>FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201500131$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201500131$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,50923,51032</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26083237$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>von Nussbaum, Franz</creatorcontrib><creatorcontrib>Li, Volkhart M.-J.</creatorcontrib><creatorcontrib>Allerheiligen, Swen</creatorcontrib><creatorcontrib>Anlauf, Sonja</creatorcontrib><creatorcontrib>Bärfacker, Lars</creatorcontrib><creatorcontrib>Bechem, Martin</creatorcontrib><creatorcontrib>Delbeck, Martina</creatorcontrib><creatorcontrib>Fitzgerald, Mary F.</creatorcontrib><creatorcontrib>Gerisch, Michael</creatorcontrib><creatorcontrib>Gielen-Haertwig, Heike</creatorcontrib><creatorcontrib>Haning, Helmut</creatorcontrib><creatorcontrib>Karthaus, Dagmar</creatorcontrib><creatorcontrib>Lang, Dieter</creatorcontrib><creatorcontrib>Lustig, Klemens</creatorcontrib><creatorcontrib>Meibom, Daniel</creatorcontrib><creatorcontrib>Mittendorf, Joachim</creatorcontrib><creatorcontrib>Rosentreter, Ulrich</creatorcontrib><creatorcontrib>Schäfer, Martina</creatorcontrib><creatorcontrib>Schäfer, Stefan</creatorcontrib><creatorcontrib>Schamberger, Jens</creatorcontrib><creatorcontrib>Telan, Leila A.</creatorcontrib><creatorcontrib>Tersteegen, Adrian</creatorcontrib><title>Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases. Breathe better: It′s as potent as a low‐molecular‐weight inhibitor can get! Human neutrophil elastase (HNE) is a driver of pulmonary diseases. We describe the discovery of BAY 85‐8501, a small‐molecule inhibitor with picomolar in vitro potency against HNE. BAY 85‐8501 is currently being assessed in clinical studies for pulmonary diseases.</description><subject>biginelli reaction</subject><subject>biological activity</subject><subject>Dose-Response Relationship, Drug</subject><subject>elastase inhibitors</subject><subject>Freezing</subject><subject>Humans</subject><subject>Leukocyte Elastase - antagonists &amp; inhibitors</subject><subject>Leukocyte Elastase - metabolism</subject><subject>Lung Diseases - enzymology</subject><subject>Molecular Conformation</subject><subject>proteases</subject><subject>Proteinase Inhibitory Proteins, Secretory - chemistry</subject><subject>Proteinase Inhibitory Proteins, Secretory - pharmacology</subject><subject>pyrimidinones</subject><subject>Pyrimidinones - chemistry</subject><subject>Pyrimidinones - pharmacology</subject><subject>Structure-Activity Relationship</subject><subject>Sulfones - chemistry</subject><subject>Sulfones - pharmacology</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkUFv0zAYhiMEYmNw5Yj8A0ixEyd2OSCt6dpVKluldZo4WY5jr4bErmx3UE5c9nv2n_gluAqLxomLbX1-n_f77DdJ3iI4QhBmH0TXiFEGUQEhytGz5BjREqYEUfJ8OJPxUfLK-68QYkwRfZkcZSWkeZaT4-Rh5qT8qc0tCBsJJtpyEfSdBJU1yrqOB20NCBZMrPUBrGyQRuw_gnUULxppglZa9CKrwOT0y-9f97RIaQHRe8DBlWxl78dN09MBLMxG1zpYd0DOdx034ELugrPbjW7BWct94F6C2B6sdm1nDXd7MNVexqp_nbxQvPXyzd_9JLmena2r83R5OV9Up8tUxHehVMiyoUqRekxwoTjK81KIpuaqxooTQhGP3wUbiJVCuM7iOuZlKXhBMFW4aPKT5FPvu93VnWxEHNzxlm2d7uI4zHLN_r0xesNu7R3DRcyC4mgw6g2Es947qQYWQXaIjh2iY0N0EXj3tOMgf8wqCsa94Ltu5f4_dqz6PK2emqc9q32QPwaWu2-sJDkp2M3FnE3X0_nqBs3YMv8Djca5tQ</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>von Nussbaum, Franz</creator><creator>Li, Volkhart M.-J.</creator><creator>Allerheiligen, Swen</creator><creator>Anlauf, Sonja</creator><creator>Bärfacker, Lars</creator><creator>Bechem, Martin</creator><creator>Delbeck, Martina</creator><creator>Fitzgerald, Mary F.</creator><creator>Gerisch, Michael</creator><creator>Gielen-Haertwig, Heike</creator><creator>Haning, Helmut</creator><creator>Karthaus, Dagmar</creator><creator>Lang, Dieter</creator><creator>Lustig, Klemens</creator><creator>Meibom, Daniel</creator><creator>Mittendorf, Joachim</creator><creator>Rosentreter, Ulrich</creator><creator>Schäfer, Martina</creator><creator>Schäfer, Stefan</creator><creator>Schamberger, Jens</creator><creator>Telan, Leila A.</creator><creator>Tersteegen, Adrian</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201507</creationdate><title>Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases</title><author>von Nussbaum, Franz ; Li, Volkhart M.-J. ; Allerheiligen, Swen ; Anlauf, Sonja ; Bärfacker, Lars ; Bechem, Martin ; Delbeck, Martina ; Fitzgerald, Mary F. ; Gerisch, Michael ; Gielen-Haertwig, Heike ; Haning, Helmut ; Karthaus, Dagmar ; Lang, Dieter ; Lustig, Klemens ; Meibom, Daniel ; Mittendorf, Joachim ; Rosentreter, Ulrich ; Schäfer, Martina ; Schäfer, Stefan ; Schamberger, Jens ; Telan, Leila A. ; Tersteegen, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>biginelli reaction</topic><topic>biological activity</topic><topic>Dose-Response Relationship, Drug</topic><topic>elastase inhibitors</topic><topic>Freezing</topic><topic>Humans</topic><topic>Leukocyte Elastase - antagonists &amp; inhibitors</topic><topic>Leukocyte Elastase - metabolism</topic><topic>Lung Diseases - enzymology</topic><topic>Molecular Conformation</topic><topic>proteases</topic><topic>Proteinase Inhibitory Proteins, Secretory - chemistry</topic><topic>Proteinase Inhibitory Proteins, Secretory - pharmacology</topic><topic>pyrimidinones</topic><topic>Pyrimidinones - chemistry</topic><topic>Pyrimidinones - pharmacology</topic><topic>Structure-Activity Relationship</topic><topic>Sulfones - chemistry</topic><topic>Sulfones - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Nussbaum, Franz</creatorcontrib><creatorcontrib>Li, Volkhart M.-J.</creatorcontrib><creatorcontrib>Allerheiligen, Swen</creatorcontrib><creatorcontrib>Anlauf, Sonja</creatorcontrib><creatorcontrib>Bärfacker, Lars</creatorcontrib><creatorcontrib>Bechem, Martin</creatorcontrib><creatorcontrib>Delbeck, Martina</creatorcontrib><creatorcontrib>Fitzgerald, Mary F.</creatorcontrib><creatorcontrib>Gerisch, Michael</creatorcontrib><creatorcontrib>Gielen-Haertwig, Heike</creatorcontrib><creatorcontrib>Haning, Helmut</creatorcontrib><creatorcontrib>Karthaus, Dagmar</creatorcontrib><creatorcontrib>Lang, Dieter</creatorcontrib><creatorcontrib>Lustig, Klemens</creatorcontrib><creatorcontrib>Meibom, Daniel</creatorcontrib><creatorcontrib>Mittendorf, Joachim</creatorcontrib><creatorcontrib>Rosentreter, Ulrich</creatorcontrib><creatorcontrib>Schäfer, Martina</creatorcontrib><creatorcontrib>Schäfer, Stefan</creatorcontrib><creatorcontrib>Schamberger, Jens</creatorcontrib><creatorcontrib>Telan, Leila A.</creatorcontrib><creatorcontrib>Tersteegen, Adrian</creatorcontrib><collection>Istex</collection><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Nussbaum, Franz</au><au>Li, Volkhart M.-J.</au><au>Allerheiligen, Swen</au><au>Anlauf, Sonja</au><au>Bärfacker, Lars</au><au>Bechem, Martin</au><au>Delbeck, Martina</au><au>Fitzgerald, Mary F.</au><au>Gerisch, Michael</au><au>Gielen-Haertwig, Heike</au><au>Haning, Helmut</au><au>Karthaus, Dagmar</au><au>Lang, Dieter</au><au>Lustig, Klemens</au><au>Meibom, Daniel</au><au>Mittendorf, Joachim</au><au>Rosentreter, Ulrich</au><au>Schäfer, Martina</au><au>Schäfer, Stefan</au><au>Schamberger, Jens</au><au>Telan, Leila A.</au><au>Tersteegen, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2015-07</date><risdate>2015</risdate><volume>10</volume><issue>7</issue><spage>1163</spage><epage>1173</epage><pages>1163-1173</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><notes>Funded Access</notes><notes>ark:/67375/WNG-DTDGPW1F-L</notes><notes>istex:EF49D1F87B6BC5AD1E7BB0325C193CA34BE7C1E0</notes><notes>ArticleID:CMDC201500131</notes><notes>Former affiliation and address during this project</notes><abstract>Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease–anti‐protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead‐structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY‐678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced‐fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85‐8501 ((4S)‐4‐[4‐cyano‐2‐(methylsulfonyl)phenyl]‐3,6‐dimethyl‐2‐oxo‐1‐[3‐(trifluoromethyl)phenyl]‐1,2,3,4‐tetrahydropyrimidine‐5‐carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85‐8501 is currently being tested in clinical studies for the treatment of pulmonary diseases. Breathe better: It′s as potent as a low‐molecular‐weight inhibitor can get! Human neutrophil elastase (HNE) is a driver of pulmonary diseases. We describe the discovery of BAY 85‐8501, a small‐molecule inhibitor with picomolar in vitro potency against HNE. BAY 85‐8501 is currently being assessed in clinical studies for pulmonary diseases.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26083237</pmid><doi>10.1002/cmdc.201500131</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-7179
ispartof ChemMedChem, 2015-07, Vol.10 (7), p.1163-1173
issn 1860-7179
1860-7187
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4515084
source Wiley
subjects biginelli reaction
biological activity
Dose-Response Relationship, Drug
elastase inhibitors
Freezing
Humans
Leukocyte Elastase - antagonists & inhibitors
Leukocyte Elastase - metabolism
Lung Diseases - enzymology
Molecular Conformation
proteases
Proteinase Inhibitory Proteins, Secretory - chemistry
Proteinase Inhibitory Proteins, Secretory - pharmacology
pyrimidinones
Pyrimidinones - chemistry
Pyrimidinones - pharmacology
Structure-Activity Relationship
Sulfones - chemistry
Sulfones - pharmacology
title Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T09%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20the%20Bioactive%20Conformation%20to%20Boost%20Potency:%20The%20Identification%20of%20BAY%E2%80%8585-8501,%20a%20Selective%20and%20Potent%20Inhibitor%20of%20Human%20Neutrophil%20Elastase%20for%20Pulmonary%20Diseases&rft.jtitle=ChemMedChem&rft.au=von%E2%80%85Nussbaum,%20Franz&rft.date=2015-07&rft.volume=10&rft.issue=7&rft.spage=1163&rft.epage=1173&rft.pages=1163-1173&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201500131&rft_dat=%3Cistex_pubme%3Eark_67375_WNG_DTDGPW1F_L%3C/istex_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3231-ce6d8ff7b9745fa1336ccdbafb4fa7781a0130d04ff14b2ff19a66ca5748f45d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/26083237&rfr_iscdi=true