Loading…

Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes

M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2015-07, Vol.5 (1), p.11757-11757, Article 11757
Main Authors: Georgieva, Elka R, Borbat, Peter P, Norman, Haley D, Freed, Jack H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63
cites cdi_FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63
container_end_page 11757
container_issue 1
container_start_page 11757
container_title Scientific reports
container_volume 5
creator Georgieva, Elka R
Borbat, Peter P
Norman, Haley D
Freed, Jack H
description M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L's, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.
doi_str_mv 10.1038/srep11757
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4507135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899507339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63</originalsourceid><addsrcrecordid>eNpdkUtLAzEYRYMottQu_AMScKOL0bwmmWwEKb6gxY2uQ5pkbMrMZJx0hPrrjfRBNZsvJIfL-bgAnGN0gxEtbmPnWoxFLo7AkCCWZ4QScnxwH4BxjEuUTk4kw_IUDAjHEhUUD8F05sxCNz7WMJTQN2XVu-Zbw3s4I3DV6SbWrp6n6aANtfYN1DGml2qdYFj51lu4I-IZOCl1Fd14O0fg_fHhbfKcTV-fXib308wwLleZFNTkjHFnGZUaG8S1dbkrkhTHyHBSUMlzWjIhuSkwF0yWmlBbCms5dpyOwN0mt-3ntbPGNcm0Um3na92tVdBe_f1p_EJ9hC_FciQwzVPA1TagC5-9iytV-2hcVaUtQh8V5rJILoyJhF7-Q5eh75q0nsKFlCmQUpmo6w1luhBTI-VeBiP1W5Pa15TYi0P7Pbkrhf4A3G-M1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899507339</pqid></control><display><type>article</type><title>Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes</title><source>Nature Open Access</source><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Georgieva, Elka R ; Borbat, Peter P ; Norman, Haley D ; Freed, Jack H</creator><creatorcontrib>Georgieva, Elka R ; Borbat, Peter P ; Norman, Haley D ; Freed, Jack H</creatorcontrib><description>M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L's, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep11757</identifier><identifier>PMID: 26190831</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Cell Membrane - metabolism ; Humans ; Hydrogen-Ion Concentration ; Influenza ; Influenza A ; Influenza A virus - metabolism ; Lipid Bilayers - metabolism ; Lipid membranes ; Lipids ; Membrane Lipids - metabolism ; Membrane proteins ; Monomers ; Peptides - metabolism ; Protein folding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Spectroscopy ; Transmembrane domains ; Viral Matrix Proteins - chemistry ; Viral Matrix Proteins - metabolism</subject><ispartof>Scientific reports, 2015-07, Vol.5 (1), p.11757-11757, Article 11757</ispartof><rights>Copyright Nature Publishing Group Jul 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited 2015 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63</citedby><cites>FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1899507339/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1899507339?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26190831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Georgieva, Elka R</creatorcontrib><creatorcontrib>Borbat, Peter P</creatorcontrib><creatorcontrib>Norman, Haley D</creatorcontrib><creatorcontrib>Freed, Jack H</creatorcontrib><title>Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L's, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.</description><subject>Cell Membrane - metabolism</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus - metabolism</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipid membranes</subject><subject>Lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane proteins</subject><subject>Monomers</subject><subject>Peptides - metabolism</subject><subject>Protein folding</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Multimerization</subject><subject>Spectroscopy</subject><subject>Transmembrane domains</subject><subject>Viral Matrix Proteins - chemistry</subject><subject>Viral Matrix Proteins - metabolism</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkUtLAzEYRYMottQu_AMScKOL0bwmmWwEKb6gxY2uQ5pkbMrMZJx0hPrrjfRBNZsvJIfL-bgAnGN0gxEtbmPnWoxFLo7AkCCWZ4QScnxwH4BxjEuUTk4kw_IUDAjHEhUUD8F05sxCNz7WMJTQN2XVu-Zbw3s4I3DV6SbWrp6n6aANtfYN1DGml2qdYFj51lu4I-IZOCl1Fd14O0fg_fHhbfKcTV-fXib308wwLleZFNTkjHFnGZUaG8S1dbkrkhTHyHBSUMlzWjIhuSkwF0yWmlBbCms5dpyOwN0mt-3ntbPGNcm0Um3na92tVdBe_f1p_EJ9hC_FciQwzVPA1TagC5-9iytV-2hcVaUtQh8V5rJILoyJhF7-Q5eh75q0nsKFlCmQUpmo6w1luhBTI-VeBiP1W5Pa15TYi0P7Pbkrhf4A3G-M1w</recordid><startdate>20150720</startdate><enddate>20150720</enddate><creator>Georgieva, Elka R</creator><creator>Borbat, Peter P</creator><creator>Norman, Haley D</creator><creator>Freed, Jack H</creator><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150720</creationdate><title>Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes</title><author>Georgieva, Elka R ; Borbat, Peter P ; Norman, Haley D ; Freed, Jack H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Membrane - metabolism</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus - metabolism</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipid membranes</topic><topic>Lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane proteins</topic><topic>Monomers</topic><topic>Peptides - metabolism</topic><topic>Protein folding</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Multimerization</topic><topic>Spectroscopy</topic><topic>Transmembrane domains</topic><topic>Viral Matrix Proteins - chemistry</topic><topic>Viral Matrix Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgieva, Elka R</creatorcontrib><creatorcontrib>Borbat, Peter P</creatorcontrib><creatorcontrib>Norman, Haley D</creatorcontrib><creatorcontrib>Freed, Jack H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgieva, Elka R</au><au>Borbat, Peter P</au><au>Norman, Haley D</au><au>Freed, Jack H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2015-07-20</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>11757</spage><epage>11757</epage><pages>11757-11757</pages><artnum>11757</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>M2 from influenza A virus functions as an oligomeric proton channel essential for the viral cycle, hence it is a high-priority pharmacological target whose structure and functions require better understanding. We studied the mechanism of M2 transmembrane domain (M2TMD) assembly in lipid membranes by the powerful biophysical technique of double electron-electron resonance (DEER) spectroscopy. By varying the M2TMD-to-lipid molar ratio over a wide range from 1:18,800 to 1:160, we found that M2TMD exists as monomers, dimers, and tetramers whose relative populations shift to tetramers with the increase of peptide-to-lipid (P/L) molar ratio. Our results strongly support the tandem mechanism of M2 assembly that is monomers-to-dimer then dimers-to-tetramer, since tight dimers are abundant at small P/L's, and thereafter they assemble as dimers of dimers in weaker tetramers. The stepwise mechanism found for a single-pass membrane protein oligomeric assembly should contribute to the knowledge of the association steps in membrane protein folding.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>26190831</pmid><doi>10.1038/srep11757</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-07, Vol.5 (1), p.11757-11757, Article 11757
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4507135
source Nature Open Access; Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Membrane - metabolism
Humans
Hydrogen-Ion Concentration
Influenza
Influenza A
Influenza A virus - metabolism
Lipid Bilayers - metabolism
Lipid membranes
Lipids
Membrane Lipids - metabolism
Membrane proteins
Monomers
Peptides - metabolism
Protein folding
Protein Interaction Domains and Motifs
Protein Multimerization
Spectroscopy
Transmembrane domains
Viral Matrix Proteins - chemistry
Viral Matrix Proteins - metabolism
title Mechanism of influenza A M2 transmembrane domain assembly in lipid membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T20%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20influenza%20A%20M2%20transmembrane%20domain%20assembly%20in%20lipid%20membranes&rft.jtitle=Scientific%20reports&rft.au=Georgieva,%20Elka%20R&rft.date=2015-07-20&rft.volume=5&rft.issue=1&rft.spage=11757&rft.epage=11757&rft.pages=11757-11757&rft.artnum=11757&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep11757&rft_dat=%3Cproquest_pubme%3E1899507339%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-973c5446ed439a1c06ade5e8619610c62839653f4796c816749fa23df7dd61e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899507339&rft_id=info:pmid/26190831&rfr_iscdi=true