Loading…

Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights

Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediate...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2015-04, Vol.108 (8), p.1934-1945
Main Authors: Williams, John C., Entcheva, Emilia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243
cites cdi_FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243
container_end_page 1945
container_issue 8
container_start_page 1934
container_title Biophysical journal
container_volume 108
creator Williams, John C.
Entcheva, Emilia
description Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.
doi_str_mv 10.1016/j.bpj.2015.03.032
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4407252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349515002933</els_id><sourcerecordid>1675876655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243</originalsourceid><addsrcrecordid>eNp9kUFrFDEYhoModq3-AC8y4MXLrF-SSWZHQZCltoVKD9ZzyGS-2WaYSdYks7D_3gzbFvUgfJBDnjy8X15C3lJYU6Dy47Bu98OaARVr4HnYM7KiomIlwEY-JysAkCWvGnFGXsU4AFAmgL4kZ0w0wCrOV-Tudp_8Dh0ma4oDhjjH4mJEk4I1eix-JDvNo07Wu8L3xdU8aVdsdeisn47eHBPGT8V33-Fo3a64dtHu7lN8TV70eoz45uE8Jz-_Xdxtr8qb28vr7deb0ohKpJLWtOabmrdNI4QUHLDpe8kb4BwZb_u6003Ta61ZxYwRWvadblujeUUFXfKfky8n735uJ-wMuhT0qPbBTjoclddW_X3j7L3a-YOqKqiZYFnw4UEQ_K8ZY1KTjQbHUTv0c1RU1mJTSylERt__gw5-Di6vt1CyzspNkyl6okzwMQbsn8JQUEtnalC5M7V0poDnWUK8-3OLpxePJWXg8wnA_JcHi0FFY9EZ7GzITanO2__ofwODwKgl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676744089</pqid></control><display><type>article</type><title>Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><source>PubMed Central</source><creator>Williams, John C. ; Entcheva, Emilia</creator><creatorcontrib>Williams, John C. ; Entcheva, Emilia</creatorcontrib><description>Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2015.03.032</identifier><identifier>PMID: 25902433</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials ; Cardiomyocytes ; Cells ; Channelrhodopsins ; Channels and Transporters ; Electric Stimulation - methods ; Gene expression ; Humans ; Kinetics ; Models, Cardiovascular ; Morphology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Optogenetics - methods ; Purkinje Fibers - metabolism ; Purkinje Fibers - physiology</subject><ispartof>Biophysical journal, 2015-04, Vol.108 (8), p.1934-1945</ispartof><rights>2015 Biophysical Society</rights><rights>Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Apr 21, 2015</rights><rights>2015 by the Biophysical Society. 2015 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243</citedby><cites>FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407252/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407252/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,733,786,790,891,27957,27958,53827,53829</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25902433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, John C.</creatorcontrib><creatorcontrib>Entcheva, Emilia</creatorcontrib><title>Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.</description><subject>Action Potentials</subject><subject>Cardiomyocytes</subject><subject>Cells</subject><subject>Channelrhodopsins</subject><subject>Channels and Transporters</subject><subject>Electric Stimulation - methods</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Cardiovascular</subject><subject>Morphology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Optogenetics - methods</subject><subject>Purkinje Fibers - metabolism</subject><subject>Purkinje Fibers - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFrFDEYhoModq3-AC8y4MXLrF-SSWZHQZCltoVKD9ZzyGS-2WaYSdYks7D_3gzbFvUgfJBDnjy8X15C3lJYU6Dy47Bu98OaARVr4HnYM7KiomIlwEY-JysAkCWvGnFGXsU4AFAmgL4kZ0w0wCrOV-Tudp_8Dh0ma4oDhjjH4mJEk4I1eix-JDvNo07Wu8L3xdU8aVdsdeisn47eHBPGT8V33-Fo3a64dtHu7lN8TV70eoz45uE8Jz-_Xdxtr8qb28vr7deb0ohKpJLWtOabmrdNI4QUHLDpe8kb4BwZb_u6003Ta61ZxYwRWvadblujeUUFXfKfky8n735uJ-wMuhT0qPbBTjoclddW_X3j7L3a-YOqKqiZYFnw4UEQ_K8ZY1KTjQbHUTv0c1RU1mJTSylERt__gw5-Di6vt1CyzspNkyl6okzwMQbsn8JQUEtnalC5M7V0poDnWUK8-3OLpxePJWXg8wnA_JcHi0FFY9EZ7GzITanO2__ofwODwKgl</recordid><startdate>20150421</startdate><enddate>20150421</enddate><creator>Williams, John C.</creator><creator>Entcheva, Emilia</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150421</creationdate><title>Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights</title><author>Williams, John C. ; Entcheva, Emilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials</topic><topic>Cardiomyocytes</topic><topic>Cells</topic><topic>Channelrhodopsins</topic><topic>Channels and Transporters</topic><topic>Electric Stimulation - methods</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Cardiovascular</topic><topic>Morphology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Optogenetics - methods</topic><topic>Purkinje Fibers - metabolism</topic><topic>Purkinje Fibers - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, John C.</creatorcontrib><creatorcontrib>Entcheva, Emilia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, John C.</au><au>Entcheva, Emilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2015-04-21</date><risdate>2015</risdate><volume>108</volume><issue>8</issue><spage>1934</spage><epage>1945</epage><pages>1934-1945</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current—a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25902433</pmid><doi>10.1016/j.bpj.2015.03.032</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2015-04, Vol.108 (8), p.1934-1945
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4407252
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS; PubMed Central
subjects Action Potentials
Cardiomyocytes
Cells
Channelrhodopsins
Channels and Transporters
Electric Stimulation - methods
Gene expression
Humans
Kinetics
Models, Cardiovascular
Morphology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
Optogenetics - methods
Purkinje Fibers - metabolism
Purkinje Fibers - physiology
title Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T07%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optogenetic%20versus%20Electrical%20Stimulation%20of%20Human%20Cardiomyocytes:%20Modeling%20Insights&rft.jtitle=Biophysical%20journal&rft.au=Williams,%20John%C2%A0C.&rft.date=2015-04-21&rft.volume=108&rft.issue=8&rft.spage=1934&rft.epage=1945&rft.pages=1934-1945&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2015.03.032&rft_dat=%3Cproquest_pubme%3E1675876655%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-17173873b99556530e9ff639033e23bf7da99faaa242cc5a6fdabbca341510243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1676744089&rft_id=info:pmid/25902433&rfr_iscdi=true