Loading…
Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension
The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or k...
Saved in:
Published in: | Journal of the American Society of Nephrology 2014-03, Vol.25 (3), p.511-522 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33 |
container_end_page | 522 |
container_issue | 3 |
container_start_page | 511 |
container_title | Journal of the American Society of Nephrology |
container_volume | 25 |
creator | PICARD, Nicolas TROMPF, Katja YANG, Chao-Ling MILLER, R. Lance CARREL, Monique LOFFING-CUENI, Dominique FENTON, Robert A ELLISON, David H LOFFING, Johannes |
description | The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity. |
doi_str_mv | 10.1681/asn.2012121202 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3935578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1504165533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33</originalsourceid><addsrcrecordid>eNpVkctv1DAQxi0Eog-4ckS-IHHJYntiJ7kgrVJKK1Wl4nG2Zh2bNcrawU6Q9safjlddWpAPtjy_-ebxEfKKsxVXLX-HOawE4-JwmHhCTrkEqKCW7Gl5s1pVSjVwQs5y_sEYl6JpnpMTUQvgSnan5PddirP1gd5tY562OGO2lNPrsPUbP8dUcXphnTfeBrOnn-2wGJuPcEz7EWcfA42uhAKO9Bb7kfZxThjyFNNsE8Uw0B6XXNLWhw9fsKv9VKqGXHJfkGcOx2xfHu9z8u3yw9f-qrr59PG6X99URgKfq4bVnenUIIXg2NXt4KSoy9CdLJPIjXADB8tca0AAonBKWNG2oFpR9qEQ4Jy8v9edls3ODsaG0uSop-R3mPY6otf_R4Lf6u_xl4YOpGzaIvD2KJDiz8XmWe98NnYcMdi4ZM0lq8tOS7mCru5Rk2LOybqHMpzpg216_eVWP9pWEl7_29wD_tenArw5ApgNjq7s1_j8yLUAXcMB_gDTvKEi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504165533</pqid></control><display><type>article</type><title>Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension</title><source>EZB Free E-Journals</source><source>PubMed Central</source><creator>PICARD, Nicolas ; TROMPF, Katja ; YANG, Chao-Ling ; MILLER, R. Lance ; CARREL, Monique ; LOFFING-CUENI, Dominique ; FENTON, Robert A ; ELLISON, David H ; LOFFING, Johannes</creator><creatorcontrib>PICARD, Nicolas ; TROMPF, Katja ; YANG, Chao-Ling ; MILLER, R. Lance ; CARREL, Monique ; LOFFING-CUENI, Dominique ; FENTON, Robert A ; ELLISON, David H ; LOFFING, Johannes</creatorcontrib><description>The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.</description><identifier>ISSN: 1046-6673</identifier><identifier>EISSN: 1533-3450</identifier><identifier>DOI: 10.1681/asn.2012121202</identifier><identifier>PMID: 24231659</identifier><identifier>CODEN: JASNEU</identifier><language>eng</language><publisher>Washington, DC: American Society of Nephrology</publisher><subject>Animals ; Anion Transport Proteins - metabolism ; Basic Research ; Biological and medical sciences ; Blood Pressure ; Female ; Humans ; Hypotension - enzymology ; Kidney Tubules, Distal - enzymology ; Loop of Henle - enzymology ; Male ; Medical sciences ; Mice ; Mice, Transgenic ; Nephrology. Urinary tract diseases ; Phosphorylation ; Protein-Serine-Threonine Kinases - metabolism ; Proteins - genetics ; Proteins - metabolism ; Solute Carrier Family 12, Member 1 - metabolism ; Solute Carrier Family 12, Member 3 - metabolism ; Up-Regulation ; Xenopus</subject><ispartof>Journal of the American Society of Nephrology, 2014-03, Vol.25 (3), p.511-522</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 by the American Society of Nephrology 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33</citedby><cites>FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935578/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935578/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,730,783,787,888,27936,27937,53804,53806</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28339713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24231659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PICARD, Nicolas</creatorcontrib><creatorcontrib>TROMPF, Katja</creatorcontrib><creatorcontrib>YANG, Chao-Ling</creatorcontrib><creatorcontrib>MILLER, R. Lance</creatorcontrib><creatorcontrib>CARREL, Monique</creatorcontrib><creatorcontrib>LOFFING-CUENI, Dominique</creatorcontrib><creatorcontrib>FENTON, Robert A</creatorcontrib><creatorcontrib>ELLISON, David H</creatorcontrib><creatorcontrib>LOFFING, Johannes</creatorcontrib><title>Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension</title><title>Journal of the American Society of Nephrology</title><addtitle>J Am Soc Nephrol</addtitle><description>The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.</description><subject>Animals</subject><subject>Anion Transport Proteins - metabolism</subject><subject>Basic Research</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure</subject><subject>Female</subject><subject>Humans</subject><subject>Hypotension - enzymology</subject><subject>Kidney Tubules, Distal - enzymology</subject><subject>Loop of Henle - enzymology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Phosphorylation</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Solute Carrier Family 12, Member 1 - metabolism</subject><subject>Solute Carrier Family 12, Member 3 - metabolism</subject><subject>Up-Regulation</subject><subject>Xenopus</subject><issn>1046-6673</issn><issn>1533-3450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkctv1DAQxi0Eog-4ckS-IHHJYntiJ7kgrVJKK1Wl4nG2Zh2bNcrawU6Q9safjlddWpAPtjy_-ebxEfKKsxVXLX-HOawE4-JwmHhCTrkEqKCW7Gl5s1pVSjVwQs5y_sEYl6JpnpMTUQvgSnan5PddirP1gd5tY562OGO2lNPrsPUbP8dUcXphnTfeBrOnn-2wGJuPcEz7EWcfA42uhAKO9Bb7kfZxThjyFNNsE8Uw0B6XXNLWhw9fsKv9VKqGXHJfkGcOx2xfHu9z8u3yw9f-qrr59PG6X99URgKfq4bVnenUIIXg2NXt4KSoy9CdLJPIjXADB8tca0AAonBKWNG2oFpR9qEQ4Jy8v9edls3ODsaG0uSop-R3mPY6otf_R4Lf6u_xl4YOpGzaIvD2KJDiz8XmWe98NnYcMdi4ZM0lq8tOS7mCru5Rk2LOybqHMpzpg216_eVWP9pWEl7_29wD_tenArw5ApgNjq7s1_j8yLUAXcMB_gDTvKEi</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>PICARD, Nicolas</creator><creator>TROMPF, Katja</creator><creator>YANG, Chao-Ling</creator><creator>MILLER, R. Lance</creator><creator>CARREL, Monique</creator><creator>LOFFING-CUENI, Dominique</creator><creator>FENTON, Robert A</creator><creator>ELLISON, David H</creator><creator>LOFFING, Johannes</creator><general>American Society of Nephrology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140301</creationdate><title>Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension</title><author>PICARD, Nicolas ; TROMPF, Katja ; YANG, Chao-Ling ; MILLER, R. Lance ; CARREL, Monique ; LOFFING-CUENI, Dominique ; FENTON, Robert A ; ELLISON, David H ; LOFFING, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Anion Transport Proteins - metabolism</topic><topic>Basic Research</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure</topic><topic>Female</topic><topic>Humans</topic><topic>Hypotension - enzymology</topic><topic>Kidney Tubules, Distal - enzymology</topic><topic>Loop of Henle - enzymology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Phosphorylation</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Solute Carrier Family 12, Member 1 - metabolism</topic><topic>Solute Carrier Family 12, Member 3 - metabolism</topic><topic>Up-Regulation</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PICARD, Nicolas</creatorcontrib><creatorcontrib>TROMPF, Katja</creatorcontrib><creatorcontrib>YANG, Chao-Ling</creatorcontrib><creatorcontrib>MILLER, R. Lance</creatorcontrib><creatorcontrib>CARREL, Monique</creatorcontrib><creatorcontrib>LOFFING-CUENI, Dominique</creatorcontrib><creatorcontrib>FENTON, Robert A</creatorcontrib><creatorcontrib>ELLISON, David H</creatorcontrib><creatorcontrib>LOFFING, Johannes</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Society of Nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PICARD, Nicolas</au><au>TROMPF, Katja</au><au>YANG, Chao-Ling</au><au>MILLER, R. Lance</au><au>CARREL, Monique</au><au>LOFFING-CUENI, Dominique</au><au>FENTON, Robert A</au><au>ELLISON, David H</au><au>LOFFING, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension</atitle><jtitle>Journal of the American Society of Nephrology</jtitle><addtitle>J Am Soc Nephrol</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>25</volume><issue>3</issue><spage>511</spage><epage>522</epage><pages>511-522</pages><issn>1046-6673</issn><eissn>1533-3450</eissn><coden>JASNEU</coden><abstract>The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.</abstract><cop>Washington, DC</cop><pub>American Society of Nephrology</pub><pmid>24231659</pmid><doi>10.1681/asn.2012121202</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-6673 |
ispartof | Journal of the American Society of Nephrology, 2014-03, Vol.25 (3), p.511-522 |
issn | 1046-6673 1533-3450 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3935578 |
source | EZB Free E-Journals; PubMed Central |
subjects | Animals Anion Transport Proteins - metabolism Basic Research Biological and medical sciences Blood Pressure Female Humans Hypotension - enzymology Kidney Tubules, Distal - enzymology Loop of Henle - enzymology Male Medical sciences Mice Mice, Transgenic Nephrology. Urinary tract diseases Phosphorylation Protein-Serine-Threonine Kinases - metabolism Proteins - genetics Proteins - metabolism Solute Carrier Family 12, Member 1 - metabolism Solute Carrier Family 12, Member 3 - metabolism Up-Regulation Xenopus |
title | Protein Phosphatase 1 Inhibitor-1 Deficiency Reduces Phosphorylation of Renal NaCl Cotransporter and Causes Arterial Hypotension |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-16T05%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Phosphatase%201%20Inhibitor-1%20Deficiency%20Reduces%20Phosphorylation%20of%20Renal%20NaCl%20Cotransporter%20and%20Causes%20Arterial%20Hypotension&rft.jtitle=Journal%20of%20the%20American%20Society%20of%20Nephrology&rft.au=PICARD,%20Nicolas&rft.date=2014-03-01&rft.volume=25&rft.issue=3&rft.spage=511&rft.epage=522&rft.pages=511-522&rft.issn=1046-6673&rft.eissn=1533-3450&rft.coden=JASNEU&rft_id=info:doi/10.1681/asn.2012121202&rft_dat=%3Cproquest_pubme%3E1504165533%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-7049c96d5221a948df524121952315b2fd13e0f8c323aa2f62e28836825336a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1504165533&rft_id=info:pmid/24231659&rfr_iscdi=true |