Loading…

Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II

Mucolipidosis type II (MLII) is a severe multi‐systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we re...

Full description

Saved in:
Bibliographic Details
Published in:EMBO molecular medicine 2013-12, Vol.5 (12), p.1871-1886
Main Authors: Kollmann, Katrin, Pestka, Jan Malte, Kühn, Sonja Christin, Schöne, Elisabeth, Schweizer, Michaela, Karkmann, Kathrin, Otomo, Takanobu, Catala‐Lehnen, Philip, Failla, Antonio Virgilio, Marshall, Robert Percy, Krause, Matthias, Santer, Rene, Amling, Michael, Braulke, Thomas, Schinke, Thorsten
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3
cites cdi_FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3
container_end_page 1886
container_issue 12
container_start_page 1871
container_title EMBO molecular medicine
container_volume 5
creator Kollmann, Katrin
Pestka, Jan Malte
Kühn, Sonja Christin
Schöne, Elisabeth
Schweizer, Michaela
Karkmann, Kathrin
Otomo, Takanobu
Catala‐Lehnen, Philip
Failla, Antonio Virgilio
Marshall, Robert Percy
Krause, Matthias
Santer, Rene
Amling, Michael
Braulke, Thomas
Schinke, Thorsten
description Mucolipidosis type II (MLII) is a severe multi‐systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock‐in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro‐osteoclastogenic cytokine interleukin‐6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. Dysfunctional osteoblasts and the Il‐6‐driven osteoclast increase rather than lysosomal hydrolase missorting underlie the osteoporotic phenotype in a mouse model of mucolipidosis II. Bisphosphonate treatment increased bone density and stabilization.
doi_str_mv 10.1002/emmm.201302979
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299121505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3</originalsourceid><addsrcrecordid>eNqFkUFPGzEQRq2qqAHaK8dqpV64JNhe73p9qVRBgEhEXOBYWbZ3DI527dTebZV_j6NAClw4eaR58-SZD6ETgmcEY3oGfd_PKCYlpoKLT-iQ8IpPWd2wz_ua1xN0lNIK47qqSfMFTSgjlDNaHqLfF2AiqARtoYOHwobYq8EFXyjfFs6_NEMaIJhOpSE8gIfkUmHUmGA31YWUMlz0owmdW7s2bIHF4is6sKpL8O35PUb3l_O78-vpze3V4vzXzdRUJRNT2hrdWCgbgamhwhrOteKCEq0wsLbSHGsDzGreNNbypiK21trYUpt8hNKUx-jnzrsedQ-tAT9E1cl1dL2KGxmUk2873j3Kh_BXloKwirIsOH0WxPBnhDTI3iUDXac8hDFJwmrGBOWizuiPd-gqjNHn9SSlQhBKKlxlarajTMy3iWD3nyFYbpOT2-TkPrk88P31Cnv8JaoMiB3wz3Ww-UAn58vl8r_8CTinqDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299121505</pqid></control><display><type>article</type><title>Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><creator>Kollmann, Katrin ; Pestka, Jan Malte ; Kühn, Sonja Christin ; Schöne, Elisabeth ; Schweizer, Michaela ; Karkmann, Kathrin ; Otomo, Takanobu ; Catala‐Lehnen, Philip ; Failla, Antonio Virgilio ; Marshall, Robert Percy ; Krause, Matthias ; Santer, Rene ; Amling, Michael ; Braulke, Thomas ; Schinke, Thorsten</creator><creatorcontrib>Kollmann, Katrin ; Pestka, Jan Malte ; Kühn, Sonja Christin ; Schöne, Elisabeth ; Schweizer, Michaela ; Karkmann, Kathrin ; Otomo, Takanobu ; Catala‐Lehnen, Philip ; Failla, Antonio Virgilio ; Marshall, Robert Percy ; Krause, Matthias ; Santer, Rene ; Amling, Michael ; Braulke, Thomas ; Schinke, Thorsten</creatorcontrib><description>Mucolipidosis type II (MLII) is a severe multi‐systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock‐in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro‐osteoclastogenic cytokine interleukin‐6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. Dysfunctional osteoblasts and the Il‐6‐driven osteoclast increase rather than lysosomal hydrolase missorting underlie the osteoporotic phenotype in a mouse model of mucolipidosis II. Bisphosphonate treatment increased bone density and stabilization.</description><identifier>ISSN: 1757-4676</identifier><identifier>EISSN: 1757-4684</identifier><identifier>DOI: 10.1002/emmm.201302979</identifier><identifier>PMID: 24127423</identifier><language>eng</language><publisher>England: EMBO Press</publisher><subject>alendronate ; Animals ; Bone and Bones - drug effects ; Bone and Bones - metabolism ; Bone and Bones - pathology ; Bone Density Conservation Agents - pharmacology ; Bone Development - genetics ; Bone growth ; Bone loss ; Bone mass ; Bone resorption ; Bones ; Cancellous bone ; Cells, Cultured ; Child, Preschool ; Chondrocytes ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondrocytes - pathology ; Cortical bone ; Cytokines ; Defects ; Diphosphonates - pharmacology ; Disease Models, Animal ; Enzymes ; Experiments ; Female ; Genetic disorders ; Genotype &amp; phenotype ; Growth plate ; Humans ; Interleukin-6 - metabolism ; interleukin‐6 ; Macromolecules ; mannose 6‐phosphate ; Mice ; Mice, Inbred C57BL ; Mucolipidoses - diagnostic imaging ; Mucolipidoses - genetics ; Mucolipidoses - pathology ; Mucolipidosis ; mucolipidosis II ; Mutation ; Osteoblasts ; Osteoclastogenesis ; Osteoclasts ; Osteoclasts - cytology ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Osteogenesis ; Osteoporosis ; Phenotypes ; Phenotyping ; Porosity ; Proteins ; Radiography ; RANK Ligand - metabolism ; Storage diseases ; Transferases (Other Substituted Phosphate Groups) - genetics ; Transferases (Other Substituted Phosphate Groups) - metabolism</subject><ispartof>EMBO molecular medicine, 2013-12, Vol.5 (12), p.1871-1886</ispartof><rights>2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO</rights><rights>2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.</rights><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3</citedby><cites>FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2299121505/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2299121505?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,733,786,790,891,25783,27957,27958,37047,37048,44625,53827,53829,75483</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24127423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kollmann, Katrin</creatorcontrib><creatorcontrib>Pestka, Jan Malte</creatorcontrib><creatorcontrib>Kühn, Sonja Christin</creatorcontrib><creatorcontrib>Schöne, Elisabeth</creatorcontrib><creatorcontrib>Schweizer, Michaela</creatorcontrib><creatorcontrib>Karkmann, Kathrin</creatorcontrib><creatorcontrib>Otomo, Takanobu</creatorcontrib><creatorcontrib>Catala‐Lehnen, Philip</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Marshall, Robert Percy</creatorcontrib><creatorcontrib>Krause, Matthias</creatorcontrib><creatorcontrib>Santer, Rene</creatorcontrib><creatorcontrib>Amling, Michael</creatorcontrib><creatorcontrib>Braulke, Thomas</creatorcontrib><creatorcontrib>Schinke, Thorsten</creatorcontrib><title>Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II</title><title>EMBO molecular medicine</title><addtitle>EMBO Mol Med</addtitle><description>Mucolipidosis type II (MLII) is a severe multi‐systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock‐in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro‐osteoclastogenic cytokine interleukin‐6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. Dysfunctional osteoblasts and the Il‐6‐driven osteoclast increase rather than lysosomal hydrolase missorting underlie the osteoporotic phenotype in a mouse model of mucolipidosis II. Bisphosphonate treatment increased bone density and stabilization.</description><subject>alendronate</subject><subject>Animals</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - pathology</subject><subject>Bone Density Conservation Agents - pharmacology</subject><subject>Bone Development - genetics</subject><subject>Bone growth</subject><subject>Bone loss</subject><subject>Bone mass</subject><subject>Bone resorption</subject><subject>Bones</subject><subject>Cancellous bone</subject><subject>Cells, Cultured</subject><subject>Child, Preschool</subject><subject>Chondrocytes</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondrocytes - pathology</subject><subject>Cortical bone</subject><subject>Cytokines</subject><subject>Defects</subject><subject>Diphosphonates - pharmacology</subject><subject>Disease Models, Animal</subject><subject>Enzymes</subject><subject>Experiments</subject><subject>Female</subject><subject>Genetic disorders</subject><subject>Genotype &amp; phenotype</subject><subject>Growth plate</subject><subject>Humans</subject><subject>Interleukin-6 - metabolism</subject><subject>interleukin‐6</subject><subject>Macromolecules</subject><subject>mannose 6‐phosphate</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mucolipidoses - diagnostic imaging</subject><subject>Mucolipidoses - genetics</subject><subject>Mucolipidoses - pathology</subject><subject>Mucolipidosis</subject><subject>mucolipidosis II</subject><subject>Mutation</subject><subject>Osteoblasts</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteoclasts - cytology</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Osteogenesis</subject><subject>Osteoporosis</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Porosity</subject><subject>Proteins</subject><subject>Radiography</subject><subject>RANK Ligand - metabolism</subject><subject>Storage diseases</subject><subject>Transferases (Other Substituted Phosphate Groups) - genetics</subject><subject>Transferases (Other Substituted Phosphate Groups) - metabolism</subject><issn>1757-4676</issn><issn>1757-4684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFkUFPGzEQRq2qqAHaK8dqpV64JNhe73p9qVRBgEhEXOBYWbZ3DI527dTebZV_j6NAClw4eaR58-SZD6ETgmcEY3oGfd_PKCYlpoKLT-iQ8IpPWd2wz_ua1xN0lNIK47qqSfMFTSgjlDNaHqLfF2AiqARtoYOHwobYq8EFXyjfFs6_NEMaIJhOpSE8gIfkUmHUmGA31YWUMlz0owmdW7s2bIHF4is6sKpL8O35PUb3l_O78-vpze3V4vzXzdRUJRNT2hrdWCgbgamhwhrOteKCEq0wsLbSHGsDzGreNNbypiK21trYUpt8hNKUx-jnzrsedQ-tAT9E1cl1dL2KGxmUk2873j3Kh_BXloKwirIsOH0WxPBnhDTI3iUDXac8hDFJwmrGBOWizuiPd-gqjNHn9SSlQhBKKlxlarajTMy3iWD3nyFYbpOT2-TkPrk88P31Cnv8JaoMiB3wz3Ww-UAn58vl8r_8CTinqDM</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Kollmann, Katrin</creator><creator>Pestka, Jan Malte</creator><creator>Kühn, Sonja Christin</creator><creator>Schöne, Elisabeth</creator><creator>Schweizer, Michaela</creator><creator>Karkmann, Kathrin</creator><creator>Otomo, Takanobu</creator><creator>Catala‐Lehnen, Philip</creator><creator>Failla, Antonio Virgilio</creator><creator>Marshall, Robert Percy</creator><creator>Krause, Matthias</creator><creator>Santer, Rene</creator><creator>Amling, Michael</creator><creator>Braulke, Thomas</creator><creator>Schinke, Thorsten</creator><general>EMBO Press</general><general>John Wiley and Sons</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II</title><author>Kollmann, Katrin ; Pestka, Jan Malte ; Kühn, Sonja Christin ; Schöne, Elisabeth ; Schweizer, Michaela ; Karkmann, Kathrin ; Otomo, Takanobu ; Catala‐Lehnen, Philip ; Failla, Antonio Virgilio ; Marshall, Robert Percy ; Krause, Matthias ; Santer, Rene ; Amling, Michael ; Braulke, Thomas ; Schinke, Thorsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>alendronate</topic><topic>Animals</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - pathology</topic><topic>Bone Density Conservation Agents - pharmacology</topic><topic>Bone Development - genetics</topic><topic>Bone growth</topic><topic>Bone loss</topic><topic>Bone mass</topic><topic>Bone resorption</topic><topic>Bones</topic><topic>Cancellous bone</topic><topic>Cells, Cultured</topic><topic>Child, Preschool</topic><topic>Chondrocytes</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondrocytes - pathology</topic><topic>Cortical bone</topic><topic>Cytokines</topic><topic>Defects</topic><topic>Diphosphonates - pharmacology</topic><topic>Disease Models, Animal</topic><topic>Enzymes</topic><topic>Experiments</topic><topic>Female</topic><topic>Genetic disorders</topic><topic>Genotype &amp; phenotype</topic><topic>Growth plate</topic><topic>Humans</topic><topic>Interleukin-6 - metabolism</topic><topic>interleukin‐6</topic><topic>Macromolecules</topic><topic>mannose 6‐phosphate</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mucolipidoses - diagnostic imaging</topic><topic>Mucolipidoses - genetics</topic><topic>Mucolipidoses - pathology</topic><topic>Mucolipidosis</topic><topic>mucolipidosis II</topic><topic>Mutation</topic><topic>Osteoblasts</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteoclasts - cytology</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Osteogenesis</topic><topic>Osteoporosis</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Porosity</topic><topic>Proteins</topic><topic>Radiography</topic><topic>RANK Ligand - metabolism</topic><topic>Storage diseases</topic><topic>Transferases (Other Substituted Phosphate Groups) - genetics</topic><topic>Transferases (Other Substituted Phosphate Groups) - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kollmann, Katrin</creatorcontrib><creatorcontrib>Pestka, Jan Malte</creatorcontrib><creatorcontrib>Kühn, Sonja Christin</creatorcontrib><creatorcontrib>Schöne, Elisabeth</creatorcontrib><creatorcontrib>Schweizer, Michaela</creatorcontrib><creatorcontrib>Karkmann, Kathrin</creatorcontrib><creatorcontrib>Otomo, Takanobu</creatorcontrib><creatorcontrib>Catala‐Lehnen, Philip</creatorcontrib><creatorcontrib>Failla, Antonio Virgilio</creatorcontrib><creatorcontrib>Marshall, Robert Percy</creatorcontrib><creatorcontrib>Krause, Matthias</creatorcontrib><creatorcontrib>Santer, Rene</creatorcontrib><creatorcontrib>Amling, Michael</creatorcontrib><creatorcontrib>Braulke, Thomas</creatorcontrib><creatorcontrib>Schinke, Thorsten</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley-Blackwell Open Access Backfiles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kollmann, Katrin</au><au>Pestka, Jan Malte</au><au>Kühn, Sonja Christin</au><au>Schöne, Elisabeth</au><au>Schweizer, Michaela</au><au>Karkmann, Kathrin</au><au>Otomo, Takanobu</au><au>Catala‐Lehnen, Philip</au><au>Failla, Antonio Virgilio</au><au>Marshall, Robert Percy</au><au>Krause, Matthias</au><au>Santer, Rene</au><au>Amling, Michael</au><au>Braulke, Thomas</au><au>Schinke, Thorsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II</atitle><jtitle>EMBO molecular medicine</jtitle><addtitle>EMBO Mol Med</addtitle><date>2013-12</date><risdate>2013</risdate><volume>5</volume><issue>12</issue><spage>1871</spage><epage>1886</epage><pages>1871-1886</pages><issn>1757-4676</issn><eissn>1757-4684</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>These authors contributed equally to this work</notes><abstract>Mucolipidosis type II (MLII) is a severe multi‐systemic genetic disorder caused by missorting of lysosomal proteins and the subsequent lysosomal storage of undegraded macromolecules. Although affected children develop disabling skeletal abnormalities, their pathogenesis is not understood. Here we report that MLII knock‐in mice, recapitulating the human storage disease, are runted with accompanying growth plate widening, low trabecular bone mass and cortical porosity. Intralysosomal deficiency of numerous acid hydrolases results in accumulation of storage material in chondrocytes and osteoblasts, and impaired bone formation. In osteoclasts, no morphological or functional abnormalities are detected whereas osteoclastogenesis is dramatically increased in MLII mice. The high number of osteoclasts in MLII is associated with enhanced osteoblastic expression of the pro‐osteoclastogenic cytokine interleukin‐6, and pharmacological inhibition of bone resorption prevented the osteoporotic phenotype of MLII mice. Our findings show that progressive bone loss in MLII is due to the presence of dysfunctional osteoblasts combined with excessive osteoclastogenesis. They further underscore the importance of a deep skeletal phenotyping approach for other lysosomal diseases in which bone loss is a prominent feature. Dysfunctional osteoblasts and the Il‐6‐driven osteoclast increase rather than lysosomal hydrolase missorting underlie the osteoporotic phenotype in a mouse model of mucolipidosis II. Bisphosphonate treatment increased bone density and stabilization.</abstract><cop>England</cop><pub>EMBO Press</pub><pmid>24127423</pmid><doi>10.1002/emmm.201302979</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-4676
ispartof EMBO molecular medicine, 2013-12, Vol.5 (12), p.1871-1886
issn 1757-4676
1757-4684
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3914524
source ProQuest - Publicly Available Content Database; PubMed Central
subjects alendronate
Animals
Bone and Bones - drug effects
Bone and Bones - metabolism
Bone and Bones - pathology
Bone Density Conservation Agents - pharmacology
Bone Development - genetics
Bone growth
Bone loss
Bone mass
Bone resorption
Bones
Cancellous bone
Cells, Cultured
Child, Preschool
Chondrocytes
Chondrocytes - cytology
Chondrocytes - metabolism
Chondrocytes - pathology
Cortical bone
Cytokines
Defects
Diphosphonates - pharmacology
Disease Models, Animal
Enzymes
Experiments
Female
Genetic disorders
Genotype & phenotype
Growth plate
Humans
Interleukin-6 - metabolism
interleukin‐6
Macromolecules
mannose 6‐phosphate
Mice
Mice, Inbred C57BL
Mucolipidoses - diagnostic imaging
Mucolipidoses - genetics
Mucolipidoses - pathology
Mucolipidosis
mucolipidosis II
Mutation
Osteoblasts
Osteoclastogenesis
Osteoclasts
Osteoclasts - cytology
Osteoclasts - metabolism
Osteoclasts - pathology
Osteogenesis
Osteoporosis
Phenotypes
Phenotyping
Porosity
Proteins
Radiography
RANK Ligand - metabolism
Storage diseases
Transferases (Other Substituted Phosphate Groups) - genetics
Transferases (Other Substituted Phosphate Groups) - metabolism
title Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T11%3A38%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decreased%20bone%20formation%20and%20increased%20osteoclastogenesis%20cause%20bone%20loss%20in%20mucolipidosis%20II&rft.jtitle=EMBO%20molecular%20medicine&rft.au=Kollmann,%20Katrin&rft.date=2013-12&rft.volume=5&rft.issue=12&rft.spage=1871&rft.epage=1886&rft.pages=1871-1886&rft.issn=1757-4676&rft.eissn=1757-4684&rft_id=info:doi/10.1002/emmm.201302979&rft_dat=%3Cproquest_pubme%3E2299121505%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5349-2dcb8fe38902c29fc77ba7921ba0e4d5b70bce4fb788ff7851f6bbcf3bc1003c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2299121505&rft_id=info:pmid/24127423&rfr_iscdi=true