Loading…

Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor

Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which ar...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2011-04, Vol.23 (4), p.1512-1522
Main Authors: Gou, Jin-Ying, Felippes, Felipe F., Liu, Chang-Jun, Weigel, Detlef, Wang, Jia-Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3
cites cdi_FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3
container_end_page 1522
container_issue 4
container_start_page 1512
container_title The Plant cell
container_volume 23
creator Gou, Jin-Ying
Felippes, Felipe F.
Liu, Chang-Jun
Weigel, Detlef
Wang, Jia-Wei
description Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydrof lavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE {SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.
doi_str_mv 10.1105/tpc.111.084525
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41433406</jstor_id><sourcerecordid>41433406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3</originalsourceid><addsrcrecordid>eNp9kc2P0zAQxSMEYpeFKzdQxAUuKR5_JPYFqaxYQKoALUXiZjm203WVxsFOVup_z5QuFXDg5Deen58884riKZAFABGvp9GigAWRXFBxrzgHwWhFlfx-HzXhpOK1gLPiUc5bQgg0oB4WZxS4bIhqzov-k9-YKdz68tpv5h5lHMrYlcthuol2b4YwlG9DzHusfQ65xHqZTBtcHA9luy9NuQvXIOpqbdLGT96VX7-synUyQ7YpjL8cr4ydYnpcPOhMn_2Tu_Oi-Hb1bn35oVp9fv_xcrmqrGDNVOFcHaMNQCsaa42ExlveOvDgiWcUr2zLaMdl3VLlQFnGCaOu9Y44JV3HLoo3R99xbnfeWT9MyfR6TGFn0l5HE_TfnSHc6E281QwI7k-hwcs7gxR_zD5Pehey9X1vBh_nrGWtcJmMcyRf_ZcEXkvGlJIU0Rf_oNs4pwEXcfBrmBQcEFocIZtizsl3p18D0YfENSaOAvQxcXzw_M9ZT_jviBF4dgS2GSM49Tlwhnur2U-NNrHz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869738541</pqid></control><display><type>article</type><title>Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Gou, Jin-Ying ; Felippes, Felipe F. ; Liu, Chang-Jun ; Weigel, Detlef ; Wang, Jia-Wei</creator><creatorcontrib>Gou, Jin-Ying ; Felippes, Felipe F. ; Liu, Chang-Jun ; Weigel, Detlef ; Wang, Jia-Wei</creatorcontrib><description>Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydrof lavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE {SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.111.084525</identifier><identifier>PMID: 21487097</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Anthocyanins - biosynthesis ; Anthocyanins - chemistry ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biosynthesis ; Chromatography, Liquid ; Flavonoids ; Flavonols ; Gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant - genetics ; Mass Spectrometry ; MicroRNA ; MicroRNAs - metabolism ; Models, Biological ; Multiprotein Complexes - metabolism ; Plant cells ; Plants ; Plants, Genetically Modified ; Promoter Regions, Genetic - genetics ; Protein Binding ; Seedlings ; Stems ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Plant cell, 2011-04, Vol.23 (4), p.1512-1522</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Apr 2011</rights><rights>2011 American Society of Plant Biologists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3</citedby><cites>FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41433406$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41433406$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21487097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gou, Jin-Ying</creatorcontrib><creatorcontrib>Felippes, Felipe F.</creatorcontrib><creatorcontrib>Liu, Chang-Jun</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Wang, Jia-Wei</creatorcontrib><title>Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydrof lavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE {SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.</description><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Anthocyanins - biosynthesis</subject><subject>Anthocyanins - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Chromatography, Liquid</subject><subject>Flavonoids</subject><subject>Flavonols</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Mass Spectrometry</subject><subject>MicroRNA</subject><subject>MicroRNAs - metabolism</subject><subject>Models, Biological</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Protein Binding</subject><subject>Seedlings</subject><subject>Stems</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc2P0zAQxSMEYpeFKzdQxAUuKR5_JPYFqaxYQKoALUXiZjm203WVxsFOVup_z5QuFXDg5Deen58884riKZAFABGvp9GigAWRXFBxrzgHwWhFlfx-HzXhpOK1gLPiUc5bQgg0oB4WZxS4bIhqzov-k9-YKdz68tpv5h5lHMrYlcthuol2b4YwlG9DzHusfQ65xHqZTBtcHA9luy9NuQvXIOpqbdLGT96VX7-synUyQ7YpjL8cr4ydYnpcPOhMn_2Tu_Oi-Hb1bn35oVp9fv_xcrmqrGDNVOFcHaMNQCsaa42ExlveOvDgiWcUr2zLaMdl3VLlQFnGCaOu9Y44JV3HLoo3R99xbnfeWT9MyfR6TGFn0l5HE_TfnSHc6E281QwI7k-hwcs7gxR_zD5Pehey9X1vBh_nrGWtcJmMcyRf_ZcEXkvGlJIU0Rf_oNs4pwEXcfBrmBQcEFocIZtizsl3p18D0YfENSaOAvQxcXzw_M9ZT_jviBF4dgS2GSM49Tlwhnur2U-NNrHz</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Gou, Jin-Ying</creator><creator>Felippes, Felipe F.</creator><creator>Liu, Chang-Jun</creator><creator>Weigel, Detlef</creator><creator>Wang, Jia-Wei</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110401</creationdate><title>Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor</title><author>Gou, Jin-Ying ; Felippes, Felipe F. ; Liu, Chang-Jun ; Weigel, Detlef ; Wang, Jia-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Anthocyanins - biosynthesis</topic><topic>Anthocyanins - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Chromatography, Liquid</topic><topic>Flavonoids</topic><topic>Flavonols</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Mass Spectrometry</topic><topic>MicroRNA</topic><topic>MicroRNAs - metabolism</topic><topic>Models, Biological</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Protein Binding</topic><topic>Seedlings</topic><topic>Stems</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Jin-Ying</creatorcontrib><creatorcontrib>Felippes, Felipe F.</creatorcontrib><creatorcontrib>Liu, Chang-Jun</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Wang, Jia-Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Jin-Ying</au><au>Felippes, Felipe F.</au><au>Liu, Chang-Jun</au><au>Weigel, Detlef</au><au>Wang, Jia-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2011-04-01</date><risdate>2011</risdate><volume>23</volume><issue>4</issue><spage>1512</spage><epage>1522</epage><pages>1512-1522</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><notes>ObjectType-Article-2</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-1</notes><notes>content type line 23</notes><notes>ObjectType-Article-1</notes><notes>ObjectType-Feature-2</notes><notes>Online version contains Web-only data.</notes><notes>www.plantcell.org/cgi/doi/10.1105/tpc.111.084525</notes><notes>The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) are: Detlef Weigel (weigel@weigelworld.org) and Jia-Wei Wang (jia-wei.wang@tuebingen.mpg.de).</notes><notes>Open Access articles can be viewed online without a subscription.</notes><abstract>Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydrof lavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE {SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>21487097</pmid><doi>10.1105/tpc.111.084525</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2011-04, Vol.23 (4), p.1512-1522
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3101539
source Oxford University Press Journals All Titles (1996-Current); JSTOR Archival Journals and Primary Sources Collection
subjects Alcohol Oxidoreductases - genetics
Alcohol Oxidoreductases - metabolism
Anthocyanins - biosynthesis
Anthocyanins - chemistry
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biosynthesis
Chromatography, Liquid
Flavonoids
Flavonols
Gene expression regulation
Gene Expression Regulation, Plant
Genes
Genes, Plant - genetics
Mass Spectrometry
MicroRNA
MicroRNAs - metabolism
Models, Biological
Multiprotein Complexes - metabolism
Plant cells
Plants
Plants, Genetically Modified
Promoter Regions, Genetic - genetics
Protein Binding
Seedlings
Stems
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
title Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T16%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Regulation%20of%20Anthocyanin%20Biosynthesis%20in%20Arabidopsis%20by%20a%20miR156-Targeted%20SPL%20Transcription%20Factor&rft.jtitle=The%20Plant%20cell&rft.au=Gou,%20Jin-Ying&rft.date=2011-04-01&rft.volume=23&rft.issue=4&rft.spage=1512&rft.epage=1522&rft.pages=1512-1522&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.111.084525&rft_dat=%3Cjstor_pubme%3E41433406%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c537t-105f32711b57cca817ec4bd1e1e0e32ccacb32f486b29d19c34032dbed0d98df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=869738541&rft_id=info:pmid/21487097&rft_jstor_id=41433406&rfr_iscdi=true