Loading…

Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)

The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pas...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2011-03, Vol.62 (6), p.1871-1885
Main Authors: Lasseur, Bertrand, Lothier, Jérémy, Wiemken, Andres, Van Laere, André, Morvan-Bertrand, Annette, Van den Ende, Wim, Prud'homme, Marie-Pascale
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213
cites cdi_FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213
container_end_page 1885
container_issue 6
container_start_page 1871
container_title Journal of experimental botany
container_volume 62
creator Lasseur, Bertrand
Lothier, Jérémy
Wiemken, Andres
Van Laere, André
Morvan-Bertrand, Annette
Van den Ende, Wim
Prud'homme, Marie-Pascale
description The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.
doi_str_mv 10.1093/jxb/erq388
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24039550</jstor_id><sourcerecordid>24039550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213</originalsourceid><addsrcrecordid>eNp9kk2P0zAQhiMEYkvhwh3ky4oWKew4jh13D0jVwrJIFRwo58h1Jq1Xqd21k0L5wfwOHPqxwIGTR57H73z4TZLnFN5QmLCL2--LC_R3TMoHyYDmAtIsZ_RhMgDIshQmvDhLnoRwCwAcOH-cnGWUTkResEHyc-6-KV8FosgC2xY96WyFPrTKVsYuiatJu0KyRItetcbZ_qb2nY4ACW0fdB5JZbbxkWl3xFiyaZRtwyVZuwZ11yhPohipO6t7AdUQvVJe6VjM_DhpKhI67V3Ay6O6SH9HLuya1isb6thBQDIS6Zfr-Zjod5-msRO3Jhv0aK2Jwn6HywgFMpq5xnTHFI6fJo9q1QR8djiHydfr9_Orm3T2-cPHq-ks1VxkbSp5oWmVLRZCSM6ZhLpWmhcFWyjIMWeoCw5Q5ZBRgaIQggmoFXBZsaoSGWXD5O1ed9Mt1lhptLH1ptx4s1Z-Vzplyr8z1qzKpduWDAQICVFgvBdY_fPsZjor-zugVEiZF9u-2KtDMe_uOgxtuTZBYxPXj64LpeQyk3k_yDAZ_ZeMppFxFJ73oq_3aP8ZwWN96oJC2dutjHYr93aL8Ms_xz2hR39F4PwAqKBVU8d_1Cbcc2wSFy3zyL3Yc7ehdf4-nwObcA7sF3K97YY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468360541</pqid></control><display><type>article</type><title>Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Lasseur, Bertrand ; Lothier, Jérémy ; Wiemken, Andres ; Van Laere, André ; Morvan-Bertrand, Annette ; Van den Ende, Wim ; Prud'homme, Marie-Pascale</creator><creatorcontrib>Lasseur, Bertrand ; Lothier, Jérémy ; Wiemken, Andres ; Van Laere, André ; Morvan-Bertrand, Annette ; Van den Ende, Wim ; Prud'homme, Marie-Pascale</creatorcontrib><description>The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erq388</identifier><identifier>PMID: 21196473</identifier><identifier>CODEN: JEBOA6</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Amino Acid Sequence ; Amino acids ; Barley ; Biological and medical sciences ; Complementary DNA ; Enzymes ; Fructans ; Fructans - biosynthesis ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Hexosyltransferases - genetics ; Hexosyltransferases - metabolism ; Hordeum - enzymology ; Hordeum vulgare ; Leaf sheaths ; Leaves ; Life Sciences ; Lolium - enzymology ; Lolium - genetics ; Lolium - growth &amp; development ; Lolium perenne ; Molecular Sequence Data ; Pichia - metabolism ; Pichia pastoris ; Plant Leaves - enzymology ; Plant Leaves - growth &amp; development ; Plant physiology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Poa secunda ; Recombinant proteins ; Recombinant Proteins - metabolism ; RESEARCH PAPER ; Research Papers ; Vegetal Biology</subject><ispartof>Journal of experimental botany, 2011-03, Vol.62 (6), p.1871-1885</ispartof><rights>Society for Experimental Biology 2011</rights><rights>2015 INIST-CNRS</rights><rights>Attribution - NonCommercial</rights><rights>2010 The Author(s). 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213</citedby><cites>FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213</cites><orcidid>0000-0002-7802-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24039550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24039550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23968584$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21196473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01168847$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lasseur, Bertrand</creatorcontrib><creatorcontrib>Lothier, Jérémy</creatorcontrib><creatorcontrib>Wiemken, Andres</creatorcontrib><creatorcontrib>Van Laere, André</creatorcontrib><creatorcontrib>Morvan-Bertrand, Annette</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Prud'homme, Marie-Pascale</creatorcontrib><title>Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Barley</subject><subject>Biological and medical sciences</subject><subject>Complementary DNA</subject><subject>Enzymes</subject><subject>Fructans</subject><subject>Fructans - biosynthesis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hexosyltransferases - genetics</subject><subject>Hexosyltransferases - metabolism</subject><subject>Hordeum - enzymology</subject><subject>Hordeum vulgare</subject><subject>Leaf sheaths</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Lolium - enzymology</subject><subject>Lolium - genetics</subject><subject>Lolium - growth &amp; development</subject><subject>Lolium perenne</subject><subject>Molecular Sequence Data</subject><subject>Pichia - metabolism</subject><subject>Pichia pastoris</subject><subject>Plant Leaves - enzymology</subject><subject>Plant Leaves - growth &amp; development</subject><subject>Plant physiology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Poa secunda</subject><subject>Recombinant proteins</subject><subject>Recombinant Proteins - metabolism</subject><subject>RESEARCH PAPER</subject><subject>Research Papers</subject><subject>Vegetal Biology</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kk2P0zAQhiMEYkvhwh3ky4oWKew4jh13D0jVwrJIFRwo58h1Jq1Xqd21k0L5wfwOHPqxwIGTR57H73z4TZLnFN5QmLCL2--LC_R3TMoHyYDmAtIsZ_RhMgDIshQmvDhLnoRwCwAcOH-cnGWUTkResEHyc-6-KV8FosgC2xY96WyFPrTKVsYuiatJu0KyRItetcbZ_qb2nY4ACW0fdB5JZbbxkWl3xFiyaZRtwyVZuwZ11yhPohipO6t7AdUQvVJe6VjM_DhpKhI67V3Ay6O6SH9HLuya1isb6thBQDIS6Zfr-Zjod5-msRO3Jhv0aK2Jwn6HywgFMpq5xnTHFI6fJo9q1QR8djiHydfr9_Orm3T2-cPHq-ks1VxkbSp5oWmVLRZCSM6ZhLpWmhcFWyjIMWeoCw5Q5ZBRgaIQggmoFXBZsaoSGWXD5O1ed9Mt1lhptLH1ptx4s1Z-Vzplyr8z1qzKpduWDAQICVFgvBdY_fPsZjor-zugVEiZF9u-2KtDMe_uOgxtuTZBYxPXj64LpeQyk3k_yDAZ_ZeMppFxFJ73oq_3aP8ZwWN96oJC2dutjHYr93aL8Ms_xz2hR39F4PwAqKBVU8d_1Cbcc2wSFy3zyL3Yc7ehdf4-nwObcA7sF3K97YY</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Lasseur, Bertrand</creator><creator>Lothier, Jérémy</creator><creator>Wiemken, Andres</creator><creator>Van Laere, André</creator><creator>Morvan-Bertrand, Annette</creator><creator>Van den Ende, Wim</creator><creator>Prud'homme, Marie-Pascale</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7802-6943</orcidid></search><sort><creationdate>20110301</creationdate><title>Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)</title><author>Lasseur, Bertrand ; Lothier, Jérémy ; Wiemken, Andres ; Van Laere, André ; Morvan-Bertrand, Annette ; Van den Ende, Wim ; Prud'homme, Marie-Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Barley</topic><topic>Biological and medical sciences</topic><topic>Complementary DNA</topic><topic>Enzymes</topic><topic>Fructans</topic><topic>Fructans - biosynthesis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hexosyltransferases - genetics</topic><topic>Hexosyltransferases - metabolism</topic><topic>Hordeum - enzymology</topic><topic>Hordeum vulgare</topic><topic>Leaf sheaths</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Lolium - enzymology</topic><topic>Lolium - genetics</topic><topic>Lolium - growth &amp; development</topic><topic>Lolium perenne</topic><topic>Molecular Sequence Data</topic><topic>Pichia - metabolism</topic><topic>Pichia pastoris</topic><topic>Plant Leaves - enzymology</topic><topic>Plant Leaves - growth &amp; development</topic><topic>Plant physiology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Poa secunda</topic><topic>Recombinant proteins</topic><topic>Recombinant Proteins - metabolism</topic><topic>RESEARCH PAPER</topic><topic>Research Papers</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lasseur, Bertrand</creatorcontrib><creatorcontrib>Lothier, Jérémy</creatorcontrib><creatorcontrib>Wiemken, Andres</creatorcontrib><creatorcontrib>Van Laere, André</creatorcontrib><creatorcontrib>Morvan-Bertrand, Annette</creatorcontrib><creatorcontrib>Van den Ende, Wim</creatorcontrib><creatorcontrib>Prud'homme, Marie-Pascale</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lasseur, Bertrand</au><au>Lothier, Jérémy</au><au>Wiemken, Andres</au><au>Van Laere, André</au><au>Morvan-Bertrand, Annette</au><au>Van den Ende, Wim</au><au>Prud'homme, Marie-Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>62</volume><issue>6</issue><spage>1871</spage><epage>1885</epage><pages>1871-1885</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><coden>JEBOA6</coden><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>Present address: Université d'Angers, UMR-462 SAGAH, 2 Bd Lavoisier, F-49045 Angers Cedex, France.</notes><notes>Present address: Unité de Recherche en Génomique Végétale (URGV), UMR INRA-1165/CNRS-8114/UEVE, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.</notes><notes>The first two authors contributed equally to the work.</notes><abstract>The main storage compounds in Lolium perenne are fructans with prevailing β(2–6) linkages. A cDNA library of L. perenne was screened using Poa secunda sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. A full-length Lp6-SFT clone was isolated as shown by heterologous expression in Pichia pastoris. High levels of Lp6-SFT transcription were found in the growth zone of elongating leaves and in mature leaf sheaths where fructans are synthesized. Upon fructan synthesis induction, Lp6-SFT transcription was high in mature leaf blades but with no concomitant accumulation of fructans. In vitro studies with the recombinant Lp6-SFT protein showed that both 1-kestotriose and 6G-kestotriose acted as fructosyl acceptors, producing 1- and 6-kestotetraose (bifurcose) and 6G,6-kestotetraose, respectively. Interestingly, bifurcose formation ceased and 6G,6-kestotetraose was formed instead, when recombinant fructan:fructan 6G-fructosyltransferase (6G-FFT) of L. perenne was introduced in the enzyme assay with sucrose and 1-kestotriose as substrates. The remarkable absence of bifurcose in L. perenne tissues might be explained by a higher affinity of 6G-FFT, as compared with 6-SFT, for 1-kestotriose, which is the first fructan formed. Surprisingly, recombinant 6-SFT from Hordeum vulgare, a plant devoid of fructans with internal glucosyl residues, also produced 6G,6-kestotetraose from sucrose and 6G-kestotriose. In the presence of recombinant L. perenne 6G-FFT, it produced 6G,6-kestotetraose from 1-kestotriose and sucrose, like L. perenne 6-SFT. Thus, we demonstrate that the two 6-SFTs have close catalytic properties and that the distinct fructans formed in L. perenne and H. vulgare can be explained by the presence of 6G-FFT activity in L. perenne and its absence in H. vulgare.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21196473</pmid><doi>10.1093/jxb/erq388</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7802-6943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2011-03, Vol.62 (6), p.1871-1885
issn 0022-0957
1460-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3060680
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects Amino Acid Sequence
Amino acids
Barley
Biological and medical sciences
Complementary DNA
Enzymes
Fructans
Fructans - biosynthesis
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Hexosyltransferases - genetics
Hexosyltransferases - metabolism
Hordeum - enzymology
Hordeum vulgare
Leaf sheaths
Leaves
Life Sciences
Lolium - enzymology
Lolium - genetics
Lolium - growth & development
Lolium perenne
Molecular Sequence Data
Pichia - metabolism
Pichia pastoris
Plant Leaves - enzymology
Plant Leaves - growth & development
Plant physiology
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Poa secunda
Recombinant proteins
Recombinant Proteins - metabolism
RESEARCH PAPER
Research Papers
Vegetal Biology
title Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T04%3A55%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20better%20understanding%20of%20the%20generation%20of%20fructan%20structure%20diversity%20in%20plants:%20molecular%20and%20functional%20characterization%20of%20a%20sucrose:fructan%206-fructosyltransferase%20(6-SFT)%20cDNA%20from%20perennial%20ryegrass%20(Lolium%20perenne)&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Lasseur,%20Bertrand&rft.date=2011-03-01&rft.volume=62&rft.issue=6&rft.spage=1871&rft.epage=1885&rft.pages=1871-1885&rft.issn=0022-0957&rft.eissn=1460-2431&rft.coden=JEBOA6&rft_id=info:doi/10.1093/jxb/erq388&rft_dat=%3Cjstor_pubme%3E24039550%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c562t-857c1d2bb66855380ffac5773ba04e43ec7500d40216e6766360fa058d3dd6213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1468360541&rft_id=info:pmid/21196473&rft_jstor_id=24039550&rfr_iscdi=true