Loading…

SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation

Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (S...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2008-07, Vol.20 (7), p.1775-1785
Main Authors: Kanaoka, Masahiro M, Pillitteri, Lynn Jo, Fujii, Hiroaki, Yoshida, Yuki, Bogenschutz, Naomi L, Takabayashi, Junji, Zhu, Jian-Kang, Torii, Keiko U
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3
cites cdi_FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3
container_end_page 1785
container_issue 7
container_start_page 1775
container_title The Plant cell
container_volume 20
creator Kanaoka, Masahiro M
Pillitteri, Lynn Jo
Fujii, Hiroaki
Yoshida, Yuki
Bogenschutz, Naomi L
Takabayashi, Junji
Zhu, Jian-Kang
Torii, Keiko U
description Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.
doi_str_mv 10.1105/tpc.108.060848
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2518248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25224288</jstor_id><sourcerecordid>25224288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3</originalsourceid><addsrcrecordid>eNpdkUuP0zAUhSMEYh6wZQdYLNilc_2Ms0GqQoGRipBIR2JnuY7TcZXGGdtFmn8_HqUaHitf63z36OqconiDYYEx8Ks0mQUGuQABkslnxTnmlJSklr-e5xkYlExwfFZcxLgHAFzh-mVxhqVgmAh-XsS2-blafr-6blYY6bFD85-gdrLG9fdocxusRY0dhrJNOlm0CXqMLjk_6gG1yU4Rra3u3LhDyaNl0FvX-Sm6mEV_0ClTn13f22DH5PTj3qviRa-HaF-f3svi5stq03wr1z--XjfLdWl4zVJJDDW8qg21WkJPpK22xnSm593WsIpyXFeEYw3UdIxjCkRKEBJ0r6kR0lp6WXyafafj9mA7kw8IelBTcAcd7pXXTv2rjO5W7fxvlW0lYTIbfDwZBH93tDGpg4smR6FH649RiZqJSvAqgx_-A_f-GHJAUREsKy4pqTO0mCETfIzB9k-XYFCPZapcZp6lmsvMC-_-vv8PfmovA29nYB-TD0864YSwnEbW3896r73Su-CiumkJ5KygpiA50AfDWa2e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218758329</pqid></control><display><type>article</type><title>SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation</title><source>Oxford University Press Journals</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kanaoka, Masahiro M ; Pillitteri, Lynn Jo ; Fujii, Hiroaki ; Yoshida, Yuki ; Bogenschutz, Naomi L ; Takabayashi, Junji ; Zhu, Jian-Kang ; Torii, Keiko U</creator><creatorcontrib>Kanaoka, Masahiro M ; Pillitteri, Lynn Jo ; Fujii, Hiroaki ; Yoshida, Yuki ; Bogenschutz, Naomi L ; Takabayashi, Junji ; Zhu, Jian-Kang ; Torii, Keiko U</creatorcontrib><description>Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.</description><identifier>ISSN: 1040-4651</identifier><identifier>ISSN: 1532-298X</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.108.060848</identifier><identifier>PMID: 18641265</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Arabidopsis - cytology ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis Proteins - physiology ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Basic Helix-Loop-Helix Transcription Factors - physiology ; Cell Differentiation - genetics ; Cell Differentiation - physiology ; Cell lines ; Cellular differentiation ; Cotyledons ; Epidermal cells ; Epidermis ; Guard cells ; Helix-Loop-Helix Motifs - genetics ; Microscopy, Confocal ; Models, Biological ; Phenotypes ; Phylogeny ; Plant cells ; Plant Epidermis - cytology ; Plant Epidermis - metabolism ; Plant Stomata - cytology ; Plant Stomata - metabolism ; Protein Binding ; Reverse Transcriptase Polymerase Chain Reaction ; Seedlings ; Stomata ; Two-Hybrid System Techniques</subject><ispartof>The Plant cell, 2008-07, Vol.20 (7), p.1775-1785</ispartof><rights>Copyright 2008 American Society of Plant Biologists</rights><rights>Copyright American Society of Plant Biologists Jul 2008</rights><rights>Copyright © 2008, American Society of Plant Biologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3</citedby><cites>FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25224288$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25224288$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,786,790,891,27957,27958,58593,58826</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18641265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanaoka, Masahiro M</creatorcontrib><creatorcontrib>Pillitteri, Lynn Jo</creatorcontrib><creatorcontrib>Fujii, Hiroaki</creatorcontrib><creatorcontrib>Yoshida, Yuki</creatorcontrib><creatorcontrib>Bogenschutz, Naomi L</creatorcontrib><creatorcontrib>Takabayashi, Junji</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><creatorcontrib>Torii, Keiko U</creatorcontrib><title>SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.</description><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Basic Helix-Loop-Helix Transcription Factors - physiology</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Differentiation - physiology</subject><subject>Cell lines</subject><subject>Cellular differentiation</subject><subject>Cotyledons</subject><subject>Epidermal cells</subject><subject>Epidermis</subject><subject>Guard cells</subject><subject>Helix-Loop-Helix Motifs - genetics</subject><subject>Microscopy, Confocal</subject><subject>Models, Biological</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant Epidermis - cytology</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant Stomata - cytology</subject><subject>Plant Stomata - metabolism</subject><subject>Protein Binding</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Seedlings</subject><subject>Stomata</subject><subject>Two-Hybrid System Techniques</subject><issn>1040-4651</issn><issn>1532-298X</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpdkUuP0zAUhSMEYh6wZQdYLNilc_2Ms0GqQoGRipBIR2JnuY7TcZXGGdtFmn8_HqUaHitf63z36OqconiDYYEx8Ks0mQUGuQABkslnxTnmlJSklr-e5xkYlExwfFZcxLgHAFzh-mVxhqVgmAh-XsS2-blafr-6blYY6bFD85-gdrLG9fdocxusRY0dhrJNOlm0CXqMLjk_6gG1yU4Rra3u3LhDyaNl0FvX-Sm6mEV_0ClTn13f22DH5PTj3qviRa-HaF-f3svi5stq03wr1z--XjfLdWl4zVJJDDW8qg21WkJPpK22xnSm593WsIpyXFeEYw3UdIxjCkRKEBJ0r6kR0lp6WXyafafj9mA7kw8IelBTcAcd7pXXTv2rjO5W7fxvlW0lYTIbfDwZBH93tDGpg4smR6FH649RiZqJSvAqgx_-A_f-GHJAUREsKy4pqTO0mCETfIzB9k-XYFCPZapcZp6lmsvMC-_-vv8PfmovA29nYB-TD0864YSwnEbW3896r73Su-CiumkJ5KygpiA50AfDWa2e</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Kanaoka, Masahiro M</creator><creator>Pillitteri, Lynn Jo</creator><creator>Fujii, Hiroaki</creator><creator>Yoshida, Yuki</creator><creator>Bogenschutz, Naomi L</creator><creator>Takabayashi, Junji</creator><creator>Zhu, Jian-Kang</creator><creator>Torii, Keiko U</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7QO</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation</title><author>Kanaoka, Masahiro M ; Pillitteri, Lynn Jo ; Fujii, Hiroaki ; Yoshida, Yuki ; Bogenschutz, Naomi L ; Takabayashi, Junji ; Zhu, Jian-Kang ; Torii, Keiko U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Basic Helix-Loop-Helix Transcription Factors - physiology</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Differentiation - physiology</topic><topic>Cell lines</topic><topic>Cellular differentiation</topic><topic>Cotyledons</topic><topic>Epidermal cells</topic><topic>Epidermis</topic><topic>Guard cells</topic><topic>Helix-Loop-Helix Motifs - genetics</topic><topic>Microscopy, Confocal</topic><topic>Models, Biological</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant Epidermis - cytology</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant Stomata - cytology</topic><topic>Plant Stomata - metabolism</topic><topic>Protein Binding</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Seedlings</topic><topic>Stomata</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanaoka, Masahiro M</creatorcontrib><creatorcontrib>Pillitteri, Lynn Jo</creatorcontrib><creatorcontrib>Fujii, Hiroaki</creatorcontrib><creatorcontrib>Yoshida, Yuki</creatorcontrib><creatorcontrib>Bogenschutz, Naomi L</creatorcontrib><creatorcontrib>Takabayashi, Junji</creatorcontrib><creatorcontrib>Zhu, Jian-Kang</creatorcontrib><creatorcontrib>Torii, Keiko U</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanaoka, Masahiro M</au><au>Pillitteri, Lynn Jo</au><au>Fujii, Hiroaki</au><au>Yoshida, Yuki</au><au>Bogenschutz, Naomi L</au><au>Takabayashi, Junji</au><au>Zhu, Jian-Kang</au><au>Torii, Keiko U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>20</volume><issue>7</issue><spage>1775</spage><epage>1785</epage><pages>1775-1785</pages><issn>1040-4651</issn><issn>1532-298X</issn><eissn>1532-298X</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><notes>www.plantcell.org/cgi/doi/10.1105/tpc.108.060848</notes><notes>Address correspondence to ktorii@u.washington.edu.</notes><notes>Online version contains Web-only data.</notes><notes>The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Keiko U. Torii (ktorii@u.washington.edu).</notes><notes>Current address: Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8402, Japan.</notes><notes>Open Access articles can be viewed online without a subscription.</notes><abstract>Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>18641265</pmid><doi>10.1105/tpc.108.060848</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2008-07, Vol.20 (7), p.1775-1785
issn 1040-4651
1532-298X
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2518248
source Oxford University Press Journals; JSTOR Archival Journals and Primary Sources Collection
subjects Arabidopsis - cytology
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis Proteins - physiology
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Basic Helix-Loop-Helix Transcription Factors - physiology
Cell Differentiation - genetics
Cell Differentiation - physiology
Cell lines
Cellular differentiation
Cotyledons
Epidermal cells
Epidermis
Guard cells
Helix-Loop-Helix Motifs - genetics
Microscopy, Confocal
Models, Biological
Phenotypes
Phylogeny
Plant cells
Plant Epidermis - cytology
Plant Epidermis - metabolism
Plant Stomata - cytology
Plant Stomata - metabolism
Protein Binding
Reverse Transcriptase Polymerase Chain Reaction
Seedlings
Stomata
Two-Hybrid System Techniques
title SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T22%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SCREAM/ICE1%20and%20SCREAM2%20Specify%20Three%20Cell-State%20Transitional%20Steps%20Leading%20to%20Arabidopsis%20Stomatal%20Differentiation&rft.jtitle=The%20Plant%20cell&rft.au=Kanaoka,%20Masahiro%20M&rft.date=2008-07-01&rft.volume=20&rft.issue=7&rft.spage=1775&rft.epage=1785&rft.pages=1775-1785&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.108.060848&rft_dat=%3Cjstor_pubme%3E25224288%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-2c3c579c3ea80f28e7bccdcf5dbc4735197251a03cd451302880680afa3c68ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218758329&rft_id=info:pmid/18641265&rft_jstor_id=25224288&rfr_iscdi=true