Loading…

SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification

Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workfl...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2024-02, Vol.96 (5), p.1843-1851
Main Authors: Wu, Yue, Sanati, Omid, Uchimiya, Mario, Krishnamurthy, Krish, Wedell, Jonathan, Hoch, Jeffrey C., Edison, Arthur S., Delaglio, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013
cites cdi_FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013
container_end_page 1851
container_issue 5
container_start_page 1843
container_title Analytical chemistry (Washington)
container_volume 96
creator Wu, Yue
Sanati, Omid
Uchimiya, Mario
Krishnamurthy, Krish
Wedell, Jonathan
Hoch, Jeffrey C.
Edison, Arthur S.
Delaglio, Frank
description Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.
doi_str_mv 10.1021/acs.analchem.3c03078
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923442626</sourcerecordid><originalsourceid>FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS1ERYfCHyAUiQ2bTJ_tOLHZoFELtFKnCFokdpbjvLSukjiNHaT-fT3MdAQsWFmWz73vWYeQNxSWFBg9NjYszWA6e4v9klvgUMlnZEEFg7yUkj0nCwDgOasADsnLEO4AKAVaviCHXLKKV1QuyM-r1eXph2w1R9-biE127XrMT9PFDdnaN9i54SbzbXa5_p5djWjjZLLVOHYusdFna4ym9p2LmH2bzRBd66yJzg-vyEFruoCvd-cR-fH50_XJWX7x9cv5yeoiN0UlY85qxEKyWjWVLRgXWKNtrLICOagCeYVCKCrBKGFMKaumEq3iQtqSSsWA8iPycds7znWPjcUhbdjpcXK9mR60N07__TK4W33jf2kKUpVC8NTwftcw-fsZQ9S9Cxa7zgzo56CZYkwVadpm2Lt_0Ds_T0nCb4oXBStZmahiS9nJhzBhu9-Ggt6408mdfnKnd-5S7O2fP9mHnmQlALbAJr4f_N_OR3wVqCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923442626</pqid></control><display><type>article</type><title>SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Yue ; Sanati, Omid ; Uchimiya, Mario ; Krishnamurthy, Krish ; Wedell, Jonathan ; Hoch, Jeffrey C. ; Edison, Arthur S. ; Delaglio, Frank</creator><creatorcontrib>Wu, Yue ; Sanati, Omid ; Uchimiya, Mario ; Krishnamurthy, Krish ; Wedell, Jonathan ; Hoch, Jeffrey C. ; Edison, Arthur S. ; Delaglio, Frank</creatorcontrib><description>Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c03078</identifier><identifier>PMID: 38273718</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Annotations ; Automation ; Biological properties ; Biological samples ; Cloud computing ; Decomposition ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; Markov chains ; Metabolites ; Metabolomics ; Mixtures ; Modelling ; Monte Carlo simulation ; NMR ; Nuclear magnetic resonance ; Sand ; Software ; Spectra ; Time domain analysis ; Workflow</subject><ispartof>Analytical chemistry (Washington), 2024-02, Vol.96 (5), p.1843-1851</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 6, 2024</rights><rights>2024 American Chemical Society 2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013</citedby><cites>FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013</cites><orcidid>0000-0003-1264-2556 ; 0000-0002-5686-2350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,786,790,891,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38273718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sanati, Omid</creatorcontrib><creatorcontrib>Uchimiya, Mario</creatorcontrib><creatorcontrib>Krishnamurthy, Krish</creatorcontrib><creatorcontrib>Wedell, Jonathan</creatorcontrib><creatorcontrib>Hoch, Jeffrey C.</creatorcontrib><creatorcontrib>Edison, Arthur S.</creatorcontrib><creatorcontrib>Delaglio, Frank</creatorcontrib><title>SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Automation</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Cloud computing</subject><subject>Decomposition</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Markov chains</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mixtures</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Sand</subject><subject>Software</subject><subject>Spectra</subject><subject>Time domain analysis</subject><subject>Workflow</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAURS1ERYfCHyAUiQ2bTJ_tOLHZoFELtFKnCFokdpbjvLSukjiNHaT-fT3MdAQsWFmWz73vWYeQNxSWFBg9NjYszWA6e4v9klvgUMlnZEEFg7yUkj0nCwDgOasADsnLEO4AKAVaviCHXLKKV1QuyM-r1eXph2w1R9-biE127XrMT9PFDdnaN9i54SbzbXa5_p5djWjjZLLVOHYusdFna4ym9p2LmH2bzRBd66yJzg-vyEFruoCvd-cR-fH50_XJWX7x9cv5yeoiN0UlY85qxEKyWjWVLRgXWKNtrLICOagCeYVCKCrBKGFMKaumEq3iQtqSSsWA8iPycds7znWPjcUhbdjpcXK9mR60N07__TK4W33jf2kKUpVC8NTwftcw-fsZQ9S9Cxa7zgzo56CZYkwVadpm2Lt_0Ds_T0nCb4oXBStZmahiS9nJhzBhu9-Ggt6408mdfnKnd-5S7O2fP9mHnmQlALbAJr4f_N_OR3wVqCQ</recordid><startdate>20240206</startdate><enddate>20240206</enddate><creator>Wu, Yue</creator><creator>Sanati, Omid</creator><creator>Uchimiya, Mario</creator><creator>Krishnamurthy, Krish</creator><creator>Wedell, Jonathan</creator><creator>Hoch, Jeffrey C.</creator><creator>Edison, Arthur S.</creator><creator>Delaglio, Frank</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1264-2556</orcidid><orcidid>https://orcid.org/0000-0002-5686-2350</orcidid></search><sort><creationdate>20240206</creationdate><title>SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification</title><author>Wu, Yue ; Sanati, Omid ; Uchimiya, Mario ; Krishnamurthy, Krish ; Wedell, Jonathan ; Hoch, Jeffrey C. ; Edison, Arthur S. ; Delaglio, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Automation</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Cloud computing</topic><topic>Decomposition</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Markov chains</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mixtures</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Sand</topic><topic>Software</topic><topic>Spectra</topic><topic>Time domain analysis</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Sanati, Omid</creatorcontrib><creatorcontrib>Uchimiya, Mario</creatorcontrib><creatorcontrib>Krishnamurthy, Krish</creatorcontrib><creatorcontrib>Wedell, Jonathan</creatorcontrib><creatorcontrib>Hoch, Jeffrey C.</creatorcontrib><creatorcontrib>Edison, Arthur S.</creatorcontrib><creatorcontrib>Delaglio, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yue</au><au>Sanati, Omid</au><au>Uchimiya, Mario</au><au>Krishnamurthy, Krish</au><au>Wedell, Jonathan</au><au>Hoch, Jeffrey C.</au><au>Edison, Arthur S.</au><au>Delaglio, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2024-02-06</date><risdate>2024</risdate><volume>96</volume><issue>5</issue><spage>1843</spage><epage>1851</epage><pages>1843-1851</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><notes>ObjectType-Article-1</notes><notes>SourceType-Scholarly Journals-1</notes><notes>ObjectType-Feature-2</notes><notes>content type line 23</notes><abstract>Developments in untargeted nuclear magnetic resonance (NMR) metabolomics enable the profiling of thousands of biological samples. The exploitation of this rich source of information requires a detailed quantification of spectral features. However, the development of a consistent and automatic workflow has been challenging because of extensive signal overlap. To address this challenge, we introduce the software Spectral Automated NMR Decomposition (SAND). SAND follows on from the previous success of time-domain modeling and automatically quantifies entire spectra without manual interaction. The SAND approach uses hybrid optimization with Markov chain Monte Carlo methods, employing subsampling in both time and frequency domains. In particular, SAND randomly divides the time-domain data into training and validation sets to help avoid overfitting. We demonstrate the accuracy of SAND, which provides a correlation of ∼0.9 with ground truth on cases including highly overlapped simulated data sets, a two-compound mixture, and a urine sample spiked with different amounts of a four-compound mixture. We further demonstrate an automated annotation using correlation networks derived from SAND decomposed peaks, and on average, 74% of peaks for each compound can be recovered in single clusters. SAND is available in NMRbox, the cloud computing environment for NMR software hosted by the Network for Advanced NMR (NAN). Since the SAND method uses time-domain subsampling (i.e., random subset of time-domain points), it has the potential to be extended to a higher dimensionality and nonuniformly sampled data.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38273718</pmid><doi>10.1021/acs.analchem.3c03078</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1264-2556</orcidid><orcidid>https://orcid.org/0000-0002-5686-2350</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2024-02, Vol.96 (5), p.1843-1851
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10896553
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Algorithms
Annotations
Automation
Biological properties
Biological samples
Cloud computing
Decomposition
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
Markov chains
Metabolites
Metabolomics
Mixtures
Modelling
Monte Carlo simulation
NMR
Nuclear magnetic resonance
Sand
Software
Spectra
Time domain analysis
Workflow
title SAND: Automated Time-Domain Modeling of NMR Spectra Applied to Metabolite Quantification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-22T20%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAND:%20Automated%20Time-Domain%20Modeling%20of%20NMR%20Spectra%20Applied%20to%20Metabolite%20Quantification&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wu,%20Yue&rft.date=2024-02-06&rft.volume=96&rft.issue=5&rft.spage=1843&rft.epage=1851&rft.pages=1843-1851&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c03078&rft_dat=%3Cproquest_pubme%3E2923442626%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a478t-2bee482b9d7c4235ebecdc9c5e3094e37e559180a95aa687d75f9358c61892013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923442626&rft_id=info:pmid/38273718&rfr_iscdi=true