Loading…

Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures

We report the heptapeptide-mediated biomineralization of titanium dioxide nanoparticles from titanium alkoxides. We evaluated the influence of pH on the biomineralized products and found that nanostructured TiO2 was formed in the absence of external ions (water only) at pH ∼ 6.5. Several variants (m...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2014-04, Vol.30 (14), p.4084-4093
Main Authors: Hernández-Gordillo, Armin, Hernández-Arana, Andrés, Campero, Antonio, Vera-Robles, L. Irais
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4093
container_issue 14
container_start_page 4084
container_title Langmuir
container_volume 30
creator Hernández-Gordillo, Armin
Hernández-Arana, Andrés
Campero, Antonio
Vera-Robles, L. Irais
description We report the heptapeptide-mediated biomineralization of titanium dioxide nanoparticles from titanium alkoxides. We evaluated the influence of pH on the biomineralized products and found that nanostructured TiO2 was formed in the absence of external ions (water only) at pH ∼ 6.5. Several variants (mutants) of the peptides with different properties (i.e., different charges, isoelectric points (pIs), and sequences) were designed and tested in biomineralization experiments. Acid-catalyzed experiments were run using the H1 (HKKPSKS) peptide at room temperature, which produced anatase nanoparticles (∼5 nm in size) for the first time via a heptapeptide and sol–gel approach. In addition, the peptide H1 was used to synthesize SiO2 nanoparticles. The influence of the pH and the added ions were monitored: at higher pH levels (8–9), SiO2 nanoparticles (20–30 nm in size) were obtained. In addition, whereas borate and Tris ions allowed the formation of colloidal systems, phosphate ions were unable to produce sols. The results presented here demonstrate that biomineralization depends on the sequence and charge of the peptide, and ions in solution can optimize the formation of nanostructures.
doi_str_mv 10.1021/la500203k
format article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmed_primary_24693937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i3696367</sourcerecordid><originalsourceid>FETCH-LOGICAL-a241t-28515e65f448ed91fd9d1b738db4211b185948ca1b28489da3b43975ccf579083</originalsourceid><addsrcrecordid>eNo9kDtOw0AYhFcIREyg4ALIDaVh_314dxskiCAgRaRwqFf7snDwI_LaRTruwA05CYkCVDPFp9HMIHQJ-AYwgdvacIwJph9HKAFOcMYlEccowYLRTLCcTtBZjGuMsaJMnaIJYbmiiooE3T1UXVM1YahcWnT19-fXPNRpsW2H9xCrmHZluqqWJDWtT4u9eTVtF4d-dMPYh3iOTkpTx3Dxq1P09vS4mj1ni-X8ZXa_yAxhMGREcuAh5yVjMngFpVcerKDSW0YALEiumHQGLJFMKm-oZVQJ7lzJhcKSTtHVIXcz2iZ4vemrxvRb_TdkB1wfAOOiXndj3-7qaMB6f5D-P4j-AMDAVFM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hernández-Gordillo, Armin ; Hernández-Arana, Andrés ; Campero, Antonio ; Vera-Robles, L. Irais</creator><creatorcontrib>Hernández-Gordillo, Armin ; Hernández-Arana, Andrés ; Campero, Antonio ; Vera-Robles, L. Irais</creatorcontrib><description>We report the heptapeptide-mediated biomineralization of titanium dioxide nanoparticles from titanium alkoxides. We evaluated the influence of pH on the biomineralized products and found that nanostructured TiO2 was formed in the absence of external ions (water only) at pH ∼ 6.5. Several variants (mutants) of the peptides with different properties (i.e., different charges, isoelectric points (pIs), and sequences) were designed and tested in biomineralization experiments. Acid-catalyzed experiments were run using the H1 (HKKPSKS) peptide at room temperature, which produced anatase nanoparticles (∼5 nm in size) for the first time via a heptapeptide and sol–gel approach. In addition, the peptide H1 was used to synthesize SiO2 nanoparticles. The influence of the pH and the added ions were monitored: at higher pH levels (8–9), SiO2 nanoparticles (20–30 nm in size) were obtained. In addition, whereas borate and Tris ions allowed the formation of colloidal systems, phosphate ions were unable to produce sols. The results presented here demonstrate that biomineralization depends on the sequence and charge of the peptide, and ions in solution can optimize the formation of nanostructures.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la500203k</identifier><identifier>PMID: 24693937</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biocompatible Materials - chemical synthesis ; Biocompatible Materials - chemistry ; Gels - chemical synthesis ; Gels - chemistry ; Hydrogen-Ion Concentration ; Nanostructures - chemistry ; Oligopeptides - chemistry ; Particle Size ; Silicon Dioxide - chemical synthesis ; Silicon Dioxide - chemistry ; Surface Properties ; Titanium - chemistry</subject><ispartof>Langmuir, 2014-04, Vol.30 (14), p.4084-4093</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,786,790,27957,27958</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24693937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Gordillo, Armin</creatorcontrib><creatorcontrib>Hernández-Arana, Andrés</creatorcontrib><creatorcontrib>Campero, Antonio</creatorcontrib><creatorcontrib>Vera-Robles, L. Irais</creatorcontrib><title>Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We report the heptapeptide-mediated biomineralization of titanium dioxide nanoparticles from titanium alkoxides. We evaluated the influence of pH on the biomineralized products and found that nanostructured TiO2 was formed in the absence of external ions (water only) at pH ∼ 6.5. Several variants (mutants) of the peptides with different properties (i.e., different charges, isoelectric points (pIs), and sequences) were designed and tested in biomineralization experiments. Acid-catalyzed experiments were run using the H1 (HKKPSKS) peptide at room temperature, which produced anatase nanoparticles (∼5 nm in size) for the first time via a heptapeptide and sol–gel approach. In addition, the peptide H1 was used to synthesize SiO2 nanoparticles. The influence of the pH and the added ions were monitored: at higher pH levels (8–9), SiO2 nanoparticles (20–30 nm in size) were obtained. In addition, whereas borate and Tris ions allowed the formation of colloidal systems, phosphate ions were unable to produce sols. The results presented here demonstrate that biomineralization depends on the sequence and charge of the peptide, and ions in solution can optimize the formation of nanostructures.</description><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biocompatible Materials - chemistry</subject><subject>Gels - chemical synthesis</subject><subject>Gels - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Nanostructures - chemistry</subject><subject>Oligopeptides - chemistry</subject><subject>Particle Size</subject><subject>Silicon Dioxide - chemical synthesis</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kDtOw0AYhFcIREyg4ALIDaVh_314dxskiCAgRaRwqFf7snDwI_LaRTruwA05CYkCVDPFp9HMIHQJ-AYwgdvacIwJph9HKAFOcMYlEccowYLRTLCcTtBZjGuMsaJMnaIJYbmiiooE3T1UXVM1YahcWnT19-fXPNRpsW2H9xCrmHZluqqWJDWtT4u9eTVtF4d-dMPYh3iOTkpTx3Dxq1P09vS4mj1ni-X8ZXa_yAxhMGREcuAh5yVjMngFpVcerKDSW0YALEiumHQGLJFMKm-oZVQJ7lzJhcKSTtHVIXcz2iZ4vemrxvRb_TdkB1wfAOOiXndj3-7qaMB6f5D-P4j-AMDAVFM</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>Hernández-Gordillo, Armin</creator><creator>Hernández-Arana, Andrés</creator><creator>Campero, Antonio</creator><creator>Vera-Robles, L. Irais</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20140415</creationdate><title>Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures</title><author>Hernández-Gordillo, Armin ; Hernández-Arana, Andrés ; Campero, Antonio ; Vera-Robles, L. Irais</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a241t-28515e65f448ed91fd9d1b738db4211b185948ca1b28489da3b43975ccf579083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biocompatible Materials - chemistry</topic><topic>Gels - chemical synthesis</topic><topic>Gels - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Nanostructures - chemistry</topic><topic>Oligopeptides - chemistry</topic><topic>Particle Size</topic><topic>Silicon Dioxide - chemical synthesis</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Gordillo, Armin</creatorcontrib><creatorcontrib>Hernández-Arana, Andrés</creatorcontrib><creatorcontrib>Campero, Antonio</creatorcontrib><creatorcontrib>Vera-Robles, L. Irais</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Gordillo, Armin</au><au>Hernández-Arana, Andrés</au><au>Campero, Antonio</au><au>Vera-Robles, L. Irais</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2014-04-15</date><risdate>2014</risdate><volume>30</volume><issue>14</issue><spage>4084</spage><epage>4093</epage><pages>4084-4093</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We report the heptapeptide-mediated biomineralization of titanium dioxide nanoparticles from titanium alkoxides. We evaluated the influence of pH on the biomineralized products and found that nanostructured TiO2 was formed in the absence of external ions (water only) at pH ∼ 6.5. Several variants (mutants) of the peptides with different properties (i.e., different charges, isoelectric points (pIs), and sequences) were designed and tested in biomineralization experiments. Acid-catalyzed experiments were run using the H1 (HKKPSKS) peptide at room temperature, which produced anatase nanoparticles (∼5 nm in size) for the first time via a heptapeptide and sol–gel approach. In addition, the peptide H1 was used to synthesize SiO2 nanoparticles. The influence of the pH and the added ions were monitored: at higher pH levels (8–9), SiO2 nanoparticles (20–30 nm in size) were obtained. In addition, whereas borate and Tris ions allowed the formation of colloidal systems, phosphate ions were unable to produce sols. The results presented here demonstrate that biomineralization depends on the sequence and charge of the peptide, and ions in solution can optimize the formation of nanostructures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24693937</pmid><doi>10.1021/la500203k</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2014-04, Vol.30 (14), p.4084-4093
issn 0743-7463
1520-5827
language eng
recordid cdi_pubmed_primary_24693937
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Gels - chemical synthesis
Gels - chemistry
Hydrogen-Ion Concentration
Nanostructures - chemistry
Oligopeptides - chemistry
Particle Size
Silicon Dioxide - chemical synthesis
Silicon Dioxide - chemistry
Surface Properties
Titanium - chemistry
title Biomimetic Sol–Gel Synthesis of TiO2 and SiO2 Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-09-21T22%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20Sol%E2%80%93Gel%20Synthesis%20of%20TiO2%20and%20SiO2%20Nanostructures&rft.jtitle=Langmuir&rft.au=Herna%CC%81ndez-Gordillo,%20Armin&rft.date=2014-04-15&rft.volume=30&rft.issue=14&rft.spage=4084&rft.epage=4093&rft.pages=4084-4093&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la500203k&rft_dat=%3Cacs_pubme%3Ei3696367%3C/acs_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a241t-28515e65f448ed91fd9d1b738db4211b185948ca1b28489da3b43975ccf579083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/24693937&rfr_iscdi=true